Abstract:
The present invention relates to a mass for trapping silicon compounds, comprising a porous alumina-based support and at least one metal chosen from the metals from groups VIB and VIIIB, and exhibiting a grain density of at least 1.20 g/ml, a specific surface of at least 300 m2/g and pores with a mean size of less than 6.5 nm, as determined by mercury porosimetry. The present invention also relates to a process for the preparation of said trapping mass and to a trapping process using said trapping mass.
Abstract:
The present invention relates to a process for purifying a crude nitrogen-containing, sulfur-containing, halogen-containing pyrolysis oil originating from the pyrolysis of plastic waste, comprising (i) subjecting the crude pyrolysis oil to a treatment with a trapping agent selected from (a) an elemental metal of group 1, 2, 6, 7, 8, 9, 10, 11, 12, 13 of the IUPAC periodic table, a mixture or an alloy thereof; (b) an oxide of metals of group 1, 2, 6, 7, 8, 9, 10, 11, 12, 13 of the IUPAC periodic table or a mixture thereof; (c) an alkoxide of metals of group 1, 2 of the IUPAC periodic table or a mixture thereof; (d) a solid sorption agent as defined in the claims; or a combination of at least two trapping agents (a), (b), (c) or (d); (ii) separating the product obtained into a purified pyrolysis oil fraction having a reduced nitrogen, sulfur and halogen content in relation to the crude pyrolysis oil and a fraction comprising the trapping agent which has bound at least a part of the sulfur, nitrogen, halogen present in the crude pyrolysis oil
Abstract:
This present disclosure relates to processes and apparatuses for removing contaminants from hydrogen streams. More specifically, the present disclosure relates to processes and apparatuses wherein hydrogen is used in units that utilize catalysts that are sensitive to oxygenates. The contaminants like carbon oxides and water are removed simultaneously from the hydrogen stream to provide a rich hydrogen stream with high purity to units that utilizes catalysts that are sensitive to oxygenates.
Abstract:
This present disclosure relates to processes for removing contaminants from hydrocarbon streams, e.g. removing chlorides, CO2, COS, H2S, AsH3, methanol, mercaptans and other S- or O-containing organic compounds from olefins, paraffins, aromatics, naphthenes and other hydrocarbon streams. The process involves contacting the stream with an adsorbent which comprises a zeolite, an alumina component and a metal component e.g. sodium, in an amount at least 30% of the zeolite's ion exchange capacity.
Abstract:
Present invention relates to a novel process for upgrading a residual hydrocarbon oil feedstock having a significant amount of Conradson Carbon Residue (concarbon), metals, especially vanadium and nickel, asphaltenes, sulfur impurities and nitrogen to a lighter more valuable hydrocarbon products by reducing or minimizing coke formation and by injecting fine droplets of oil soluble organo-metallic compounds at multiple elevations of the riser with varying dosing rates.
Abstract:
Processes and apparatuses for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil are provided herein. An exemplary process for washing a spent ion exchange bed employed in purification of biomass-derived pyrolysis oil includes the step of providing a ion-depleted pyrolysis oil stream having an original oxygen content. The ion-depleted pyrolysis oil stream is partially hydrotreated to reduce the oxygen content thereof, thereby producing a partially hydrotreated pyrolysis oil stream having a residual oxygen content that is less than the original oxygen content. At least a portion of the partially hydrotreated pyrolysis oil stream is passed through the spent ion exchange bed. Water is passed through the spent ion exchange bed after passing at least the portion of the partially hydrotreated pyrolysis oil stream therethrough.
Abstract:
Metal exchanged and impregnated zeolite materials, methods for making metal exchanged and impregnated zeolite materials, and systems for reducing an amount of a contaminant species in a feed stream using a metal exchanged and impregnated zeolite material are provided. An exemplary metal exchanged and impregnated zeolite material comprises a metal exchanged zeolite material with the formula ((M2/nO)a•(M′2/n′O)a′)•Al2O3•bSiO2; and a metal oxide with the formula M2/nO impregnated in the metal exchanged zeolite material such that the metal oxide is contacting an interior surface of the pore structure of the metal exchange zeolite material. In this example, M is a cation of an alkali or alkaline earth metal, n is a valence state of metal cation M, M′ is a cation of a metal other than an alkali or alkaline earth metal, n′ is a valence state of metal cation M′, 0≦a
Abstract:
Embodiments of methods and apparatuses for treating a hydrocarbon-containing feed stream are provided. The method comprises the steps of contacting the hydrocarbon-containing feed stream comprising C4, C5, C6, and/or C7 hydrocarbons, water, and contaminants with a Linde Type A molecular sieve at dehydration conditions effective to remove water and form a dehydrated feed stream. The contaminants comprise oxygenates, sulfur compounds, or combinations thereof. The dehydrated feed stream is contacted with a sodium faujisite molecular sieve having a silica/alumina molar ratio of from about 2 to about 2.5 at absorption conditions effective to remove the contaminants and form a dehydrated contaminant-depleted feed stream.
Abstract:
The present disclosure provides a process for separating oxygenates present in an aromatic hydrocarbon stream to obtain an oxygenates-free aromatic hydrocarbon stream. The process involves selectively removing oxygenates from the aromatic hydrocarbon stream by passing said stream through at least one zeolite based adsorbing material.