摘要:
Provided is a negative electrode active material that contains silicon clathrate II and that is suitable for a negative electrode of a lithium ion secondary battery. The negative electrode active material includes a silicon material in which silicon clathrate II represented by composition formula NaxSi136 (0≤x≤10) is contained and a volume of a pore having a diameter of not greater than 100 nm is not less than 0.025 cm3/g.
摘要:
A device including a near field transducer, the near field transducer including gold (Au) and at least one other secondary atom, the at least one other secondary atom selected from: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), hafnium (Hf), niobium (Nb), manganese (Mn), antimony (Sb), tellurium (Te), carbon (C), nitrogen (N), and oxygen (O), and combinations thereof; erbium (Er), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), zinc (Zn), and combinations thereof; and barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), gadolinium (Gd), germanium (Ge), hydrogen (H), iodine (I), osmium (Os), phosphorus (P), rubidium (Rb), rhenium (Re), selenium (Se), samarium (Sm), terbium (Tb), thallium (Th), and combinations thereof.
摘要:
An electrode containing a clathrate compound is disclosed that is more likely to withstand load involved in repetition of penetration and desorption of, e.g., lithium ions compared to no guest substance-encapsulating silicon clathrate compounds. An electrode active material making up the electrode according to the present invention includes a clathrate compound. The clathrate compound contains a crystal lattice and a guest substance. The guest substance is encapsulated in the crystal lattice. It is preferable that the clathrate compound be a main component of the electrode active material that makes up the electrode.
摘要:
An electrochemically active material includes a silicon alloy material having the formula: SiwM1xCyOz, where w, x, y, and z represent atomic % values and w+x+y+z=1; M1 comprises a transition metal; w>0; x>0; y≥0; and z≥0. The electrochemically active material also includes a metal-based material having the formula: M2aObAc, where a, b, and c represent atomic % values and a+b+c=1; M2 comprises a metal; A is an anion; a>0; b≥0; and c≥0.
摘要:
A method of forming a near field transducer (NFT) layer, the method including depositing a film of a primary element, the film having a film thickness and a film expanse; and implanting at least one secondary element into the primary element, wherein the NFT layer includes the film of the primary element doped with the at least one secondary element.
摘要:
A method of forming a near field transducer (NFT) layer, the method including depositing a film of a primary element, the film having a film thickness and a film expanse; and implanting at least one secondary element into the primary element, wherein the NFT layer includes the film of the primary element doped with the at least one secondary element.
摘要:
A negative electrode for an electrical device includes: a current collector, and an electrode layer containing a negative electrode active material, an electrically-conductive auxiliary agent and a binder, wherein the negative electrode active material contains an alloy represented by a following formula (1): SixSnyMzAa (where M is at least one metal selected from the group consisting of Al, V, C and combinations thereof, A is inevitable impurity, and x, y, z and a are values of mass %, where 0
摘要:
Provided is an electrode active material containing a clathrate compound that is more likely to withstand load involved in repetition of penetration and desorption of, e.g., lithium ions compared to no guest substance-encapsulating silicon clathrate compounds. An electrode active material according to the present invention includes a clathrate compound. The clathrate compound contains a crystal lattice and a guest substance. The guest substance is encapsulated in the crystal lattice. It is preferable that the clathrate compound be a main component of the electrode active material.