Abstract:
A method of investigating a flux of output electrons emanating from a sample in a charged-particle microscope, which flux is produced in response to irradiation of the sample by a beam of input charged particles, the method comprising the following steps: Using a detector to intercept at least a portion of the flux so as to produce a set {Ij} of pixeled images Ij of at least part of the sample, whereby the cardinality of the set {Ij} is M>1. For each pixel p, in each image Ij, determining the accumulated signal strength Sij, thus producing an associated set of signal strengths {Sij}. Using the set {Sij} to calculate the following values: An average signal strength S per pixel position i; A variance σ2S in S per pixel position i. Using these values S and σ2S to at least one map of said part of the sample, selected from the group comprising: A first map, representing variation in energy of detected electrons as a function of position. A second map, representing variation in number of detected electrons as a function of position. The set {Ij} may be produced in different ways, such as: By iteratively repeating a procedure whereby an entire nth image In is captured before proceeding to capture an entire (n+1)th image In+1, or By iteratively repeating a procedure whereby, at an nth pixel position, a plurality M of different detector samples is collected before proceeding to an (n+1)th pixel position.
Abstract:
A method of investigating a flux of output electrons emanating from a sample in a charged-particle microscope, which flux is produced in response to irradiation of the sample by a beam of input charged particles, the method comprising the following steps: Using a detector to intercept at least a portion of the flux so as to produce a set {Ij} of pixeled images Ij of at least part of the sample, whereby the cardinality of the set {Ij} is M>1. For each pixel p, in each image Ij, determining the accumulated signal strength Sij, thus producing an associated set of signal strengths {Sij}. Using the set {Sij} to calculate the following values: An average signal strength S per pixel position i; A variance σ2S in S per pixel position i. Using these values S and σ2S to at least one map of said part of the sample, selected from the group comprising: A first map, representing variation in energy of detected electrons as a function of position. A second map, representing variation in number of detected electrons as a function of position. The set {Ij} may be produced in different ways, such as: By iteratively repeating a procedure whereby an entire nth image In is captured before proceeding to capture an entire (n+1)th image In+1, or By iteratively repeating a procedure whereby, at an nth pixel position, a plurality M of different detector samples is collected before proceeding to an (n+1)th pixel position.
Abstract:
The charged particle beam device has an unlimitedly rotatable sample stage and an electric field control electrode for correcting electric field distortion at a sample peripheral part. A voltage is applied to a sample on the unlimitedly rotatable sample stage through a retarding electrode that is in contact with a holder receiver at a rotation center of a rotary stage. An equipotential plane on the electric field control electrode is varied by applying a voltage to the electric field control electrode, and following this the equipotential plane at a sample edge is corrected, which enables the sample to be observed as far as its edge.
Abstract:
This invention provides a monochromator for reducing energy spread of a primary charged particle beam in charged particle apparatus, which comprises a beam adjustment element, two Wien-filter type dispersion units and an energy-limit aperture. In the monochromator, a double symmetry in deflection dispersion and fundamental trajectory along a straight optical axis is formed, which not only fundamentally avoids incurring off-axis aberrations that actually cannot be compensated but also ensures the exit beam have a virtual crossover which is stigmatic, dispersion-free and inside the monochromator. Therefore, using the monochromator in SEM can reduce chromatic aberrations without additionally incurring adverse impacts, so as to improve the ultimate imaging resolution. The improvement of the ultimate imaging resolution will be more distinct for Low-Voltage SEM and the related apparatuses which are based on LVSEM principle, such as the defect inspection and defect review in semiconductor yield management. The present invention also provides two ways to build a monochromator into a SEM, one is to locate a monochromator between the electron source and the condenser, and another is to locate a monochromator between the beam-limit aperture and the objective. The former provides an additional energy-angle depending filtering, and obtains a smaller effective energy spread.
Abstract:
A column for a charged particle beam device is described. The column includes a charged particle emitter for emitting a primary charged particle beam as one source of the primary charged particle beam; a biprism adapted for acting on the primary charged particle beam so that two virtual sources are generated; and a charged particle beam optics adapted to focus the charged particle beam simultaneously on two positions of a specimen corresponding to images of the two virtual sources.
Abstract:
A lens adjustment method and a lens adjustment system which adjust a plurality of multi-pole lenses of an electron spectrometer attached to a transmission electron microscope, optimum conditions of the multi-pole lenses are determined through simulation based on a parameter design method using exciting currents of the multi-pole lenses as parameters.
Abstract:
An ion implantation apparatus with multiple operating modes is disclosed. The ion implantation apparatus has an ion source and an ion extraction means for forming a converging beam on AMU-non-dispersive plane therefrom. The ion implantation apparatus includes magnetic scanner prior to a magnetic analyzer for scanning the beam on the non-dispersive plane, the magnetic analyzer for selecting ions with specific mass-to-charge ratio to pass through a mass slit to project onto a substrate. A rectangular quadruple magnet is provided to collimate the scanned ion beam and fine corrections of the beam incident angles onto a target. A deceleration or acceleration system incorporating energy filtering is at downstream of the beam collimator. A two-dimensional mechanical scanning system for scanning the target is disclosed, in which a beam diagnostic means is build in.
Abstract:
The present invention relates to atom probe data processes and associated systems. Aspects of the invention are directed toward a computing system configured to process atom probe data that includes a data set receiving component configured to receive a first three-dimensional data set. The first three-dimensional data set has a first data element structure and is based on data collected from performing an atom probe process on a portion of an atom probe specimen. The system further includes a data set constructing component configured to create a second three-dimensional data set having a second data element structure different than the first data element structure. In selected embodiments, the system can further include a Fourier Transform component configured to perform a Fourier Transform on a portion of the second three-dimensional data set.
Abstract:
A lens adjustment method and a lens adjustment system which adjust a plurality of multi-pole lenses of an electron spectrometer attached to a transmission electron microscope, optimum conditions of the multi-pole lenses are determined through simulation based on a parameter design method using exciting currents of the multi-pole lenses as parameters.
Abstract:
In an analyzing electromagnet 40, each of magnetic poles 80 in which the plan-view shape is curved is divided along the traveling direction of an ion beam 2 into three partial magnetic poles 81 to 83. The gaps of the first and third partial magnetic pole pairs 81, 83 as counted from the inlet for the ion beam 2 are widened toward the outside of the curvature, and the gap of the second partial magnetic pole pair 82 is widened toward the inside of the curvature.