Abstract:
A large number of passes of pump light through an active mirror in a solid state disk laser is realized using a pair of coupled imaging systems, where the optical axes of imaging systems are not coincident. Two imaging systems are optically coupled, so that an image of the first imaging system is an object of the second imaging system, and vice versa. An active mirror is disposed at the object or image plane, or at the focal plane of any one of the coupled imaging systems, where the position of the reflected pump beam during the multi-reflection between the first and second imaging systems is substantially unchanged.
Abstract:
A laser light source 1 is provided with an output mirror 11, a laser medium 12, a light beam diameter adjuster 13, an aperture 14, a reflection mirror 15, a drive unit 21, and a control unit 22, and outputs laser oscillation light 31 from the output mirror 11 to the outside. The laser resonator is configured so that the reflection mirror 15 and the output mirror 11 are disposed so as to be opposed to each other with the laser medium 12 placed therebetween. The reflection mirror 15 is configured such that it gives amplitude or phase variations to respective positions in the section of a light beam when the light is reflected, and the reflection mirror presents a amplitude or phase variation distribution in accordance with control from the outside, and determines the transverse mode of the laser oscillation light 31 based on the amplitude or phase variation distribution. Thus, a laser light source capable of easily controlling the transverse mode of the laser oscillation light can be realized.
Abstract:
In order to improve a solid-state laser, in particular a solid-state disc laser, comprising a resonator (40) that defines a resonator radiation field (30) and at least one solid-state disc (12) with the resonator radiation field (30) passing through it, in such a manner that the thermal lens effect can be at least substantially compensated, it is proposed that in reflection the resonator radiation field (30) strikes at least one first adaptive mirror unit (50, 70), with which a distortion of the resonator radiation field (30) as a result of a thermal lens effect of the at least one solid-state disc (12) can be substantially compensated. An adaptive mirror unit (50) can be configured by a heated (58a, 58b) glass sheet (54) with an HR layer (52), for example, or by a pressure-induced deformation by means a fluid (78) in a space (76), which is enclosed with the mirror (72, 74).
Abstract:
The preferably highly antireflection coated facet of a laser chip is imaged by an optical system onto a reflector, as a result of which the adjustment tolerance is substantially increased by the cat's eye effect and, since the optical system is provided with a high longitudinal chromatic aberration, the wavelength can be tuned by shifting given parts of the total system relative to other parts of the total system. In this way a tunable semiconductor laser light source which is free from mode jumps and has at most two adjustable degrees of freedom can be produced.
Abstract:
An external cavity laser includes an optical gain medium in the cavity of the external cavity laser. The optical gain medium is capable of emitting light over a range of wavelengths. The external cavity laser further includes a diffractive focusing element including a central radial portion and a peripheral radial portion. The central radial portion has a dispersivity less than a threshold, and the peripheral radial portion has a dispersivity greater than the threshold. The diffractive focusing element is operable to diffractively focus the light back into the optical gain medium at differing wavelength-dependent focal distances. The external cavity laser further includes means for confining the diffractive focusing of the light to the peripheral radial portion of the diffractive focusing element. In various embodiments, the means for confining includes a central obscuration and/or a radial offset of the diffractive focusing element.
Abstract:
An excimer or molecular fluorine laser includes a discharge chamber filled with a gas mixture, multiple electrodes within the discharge chamber connected to a power supply circuit for energizing the gas mixture, and a resonator including the discharge chamber and a pair of resonator reflectors for generating an output laser beam. The resonator includes an interferometric device, which may be a resonator reflector such as an output coupling interferometer or HR reflector, or a transmissive intracavity component, including a pair of opposing reflecting surfaces tuned to produce a response maximum at a selected wavelength for narrowing a linewidth of the output laser beam. One of the pair of opposing reflecting surfaces is preferably configured such that the opposing reflecting surfaces of the interferometer have a varying optical distance therebetween over an incident beam cross-section which serves to suppress at least one side band or outer portions of the response maximum to reduce spectral purity. Preferably, this surface is non-planar, and may include a step, a recess or a raised or recessed curved portion of a quarter wavelength in height or depth, respectively, and may be cylindrical, Gaussian or spherical, and the curvature may extend over the entire reflecting surface or diameter of the incident beam. The curved surface may be part of a component that couples with a base optical block at a surface opposing the other reflecting surface, such as by a slot defined in the optical block or using an adhesive.
Abstract:
The present invention relates to laser devices with increased cooling capability by means of largely extended cooling surfaces contacting the laser active medium. According to the present invention there is provided a laser device comprising a large active volume in conjunction with a compact structure of the device and outputting single mode radiation. The laser device according to the present invention comprises the following features. A laser active medium, an optical resonator system defining an optical axis, exciting means for exciting said laser active medium and enabling a stimulated emission of radiation of said laser active medium, and cooling means, having first and second cooling elements arranged in spaced opposing relationship with surfaces facing each other, wherein said laser active medium is provided between said cooling elements along said optical axis. In order to increase the output power and to obtain single mode radiation an optical element is provided, arranged within the optical path formed by said optical resonator system and having a refractive power in a first plane, along said optical axis and perpendicular to said surfaces, differing from a refractive power in a second plane, along the optical axis and perpendicular to said first plane, wherein a contact of a laser beam deflected in said first plane with said surfaces of said first and second cooling elements is avoided.
Abstract:
Microlaser cavity and externally controlled, passive switching, pulses solid microlaser including a saturable absorber 46 and a device (60, 62) for introducing a beam 56 into the microlaser cavity initiating or starting saturation of the saturable absorber.
Abstract:
A crystalline ternary alloy of nickel, cobalt and boron has been found to have multiple uses. The alloy has a composition of, by weight, 50-75% nickel, 25-50% cobalt, and 1-5% boron. Structurally, the alloy consists of 50-75% Ni.sub.2 B crystals and 25-50% Co.sub.2 B crystals contained in a matrix of nickel cobalt. The alloy has been found to have high catalytic capabilities and decreases the energy requirements for the electrolytic production of gasses such as hydrogen and halogens. The alloy also has good magnetic properties indicating that it can be used as a coating for a magnetic data storage media, or a thin film for a read/write head which writes to and reads from the magnetic storage media. The alloy has a magnetorestrictive coefficient that is substantially zero or negative, a magnetic saturation where 4piM.sub.s is greater than 20 KGauss, a coercivity of approximately 1.24, an anisotropy of 3.74, and a magnetic permiability in excess of 1000.
Abstract:
A solid state laser apparatus is provided to generate a high quality and high power laser beam, and a laser machining apparatus is provided to perform laser machining by a laser beam generated from the solid state laser apparatus. In the solid state laser apparatus, a laser resonator includes a solid state component cooled in a cylindrical pipe by contacting liquid which is introduced through an inflow opening and discharged through an outflow opening, the solid state component having larger refractive index than that of the liquid, a light source turned ON by a power source to excite the solid state component, and an optical system transmitting light from the light source to the solid state component. Further, a surface roughness of the solid state component is adjusted so as to adjust an excitation distribution in a section of the solid state component. The solid state component further includes moving means for moving a reflection mirror and a condensing lens in a direction of an optical axis of the laser resonator, and a housing accommodating an image transferring optical system. A laser beam is generated from the laser resonator, and is externally derived and used to perform the laser machining.