Abstract:
Methods and systems are provided for providing vacuum to a brake booster via an aspirator system. In one example, a system may include an aspirator system fluidly coupled with a brake booster with no intervening components located therebetween.
Abstract:
A vehicle thermal management system includes a heat medium-heat medium heat exchanger that exchanges heat between a first heat medium drawn into and discharged from a first pump and a second pump, and a second heat medium circulating through an engine cooling circuit. A first switching valve switches between a state in which the first heat medium discharged from the first pump flows, and another state in which the first heat medium discharged from the second pump flows, with respect to the plurality of devices and the heat medium-heat medium heat exchanger. The second switching valve switches between a state in which the first heat medium flows into the first pump, and another state in which the first heat medium flows into the second pump, with respect to the plurality of devices and the heat medium-heat medium heat exchanger.
Abstract:
An air intake duct of a motorcycle forms an air intake passage for supplying an intake air to a supercharger. The air intake duct forms a curve portion and is connected to the supercharger. The air intake passage has a transverse cross-section which is shaped such that a dimension in an orthogonal direction that is orthogonal to a radial direction of the curve portion is gradually reduced from the center of the curve portion toward an outer side, in the radial direction, of the curve portion.
Abstract:
A system and method of operating a cooling system for a vehicle engine, wherein one or more motors are operable to rotate one or more fans. Each of the one or more motors is controlled by a motor controller associated with the motor, in response to a control signal received from a system controller and an enable signal received from the vehicle. The motor controller operates the motor at a speed based upon the control signal if the control signal is received, and operates the motor at a predetermined speed if the control signal is not received but the enable signal is received.
Abstract:
This disclosure provides an ignition coil for a spark ignited internal combustion engine. The ignition coil includes a coil body having an outer surface and internal windings coupled to a connector. The ignition coil also includes a housing surrounding the coil body. The housing has an outer wall spaced apart from the outer surface of the coil body thereby forming a gap between the outer surface of the coil body and the outer wall. The outer wall includes an opening in flow communication with the gap.
Abstract:
A cooling system for an industrial vehicle includes one or more heat radiation devices located in a containment. The one or more heat radiation devices may be configured to cool a plurality of components in the industrial vehicle. An air intake device may be configured to create airflow from outside of the industrial vehicle into the containment. The airflow passes through the one or more heat radiation devices. The cooling system may further include a control device operatively connected to the containment. The control device may be configured to selectively direct at least a portion of the airflow to the plurality of components in the industrial vehicle after the airflow passes through the one or more heat radiation devices.
Abstract:
An auxiliary power unit for an aircraft, including an internal combustion engine having a liquid coolant system, a generator drivingly engaged to the internal combustion engine and having a liquid coolant system distinct from the liquid coolant system of the internal combustion engine, a first heat exchanger in fluid communication with the liquid coolant system of the internal combustion engine, a second heat exchanger in fluid communication with the liquid coolant system of the generator, an exhaust duct in fluid communication with air passages of the heat exchangers, and a fan received in the exhaust duct and rotatable by the internal combustion engine for driving a cooling air flow through the air passages. The liquid coolant system of the engine may be distinct from fuel and lubricating systems of the auxiliary power unit. A method of cooling a generator and an internal combustion engine is also discussed.
Abstract:
A chainsaw includes: an engine unit; a fuel supplying device configured to supply fuel to the engine unit; and an engine chamber defining portion defining an engine chamber therein. The engine unit includes: a cylinder unit housing a piston therein; a crankshaft configured to be driven by the piston; and a crank case configured to support the cylinder unit and house the crankshaft therein. The cylinder unit is accommodated in the engine chamber. The engine chamber defining portion has a partitioning portion interposed between the cylinder unit and the fuel supplying device and is formed with a first engine chamber venthole and a second engine chamber venthole adjacent to the cylinder unit for achieving ventilation between the engine chamber and atmosphere.
Abstract:
A cooling system for cooling a component on a farm machine according to the present disclosure can include a rotary blower and a manifold. The rotary blower can include a housing and have a first rotor and a second rotor rotatably disposed in the housing. The first and second rotors can have meshed lobes for transporting air from an inlet port to an outlet port. The rotary blower can further include a first rotor shaft and a second rotor shaft rotatably supported by the housing and having first and second rotors, respectively, fixed for rotation therewith. The manifold can direct the air from the rotary blower onto the component of the farm machine.
Abstract:
In a single-cylinder internal combustion engine fitted with a knock sensor, a temperature increase of the knock sensor is suppressed and prevented, and the reliability of the knock sensor is improved. The engine includes a crankcase, a cylinder block connected to the crankcase, a cylinder head connected to the cylinder block, a sensor mounting boss provided on the cylinder block, and a knock sensor mounted to the boss. Fins are provided on the cylinder block and the cylinder head. A heat insulation member is provided between the boss and the knock sensor.