Abstract:
Technologies are generally described for distance determination between two or more RFID tags based on a minimum detectable signal. In some examples, a first RFID tag may establish communication with a second RFID tag, and modulate an irradiating electromagnetic field to generate backscatter signals for sequential transmission to the second RFID tag. A depth of amplitude modulation of each transmitted signal may be progressively reduced until the second RFID tag can no longer detect the modulation. The particular distance between the first and second RFID tags may then be determined based on a minimum detectable signal by the second RFID tag, which may be identified as a last transmitted signal detected by the second RFID tag. In some embodiments, distance determination between two or more RFID tags as described above may be implemented for robotic sensing, assembly systems, security, and wearable technology to track motion and/or position of objects.
Abstract:
Technologies are generally described for determination and analysis of an optical profile of a liquid-based material to implement real-time monitoring of a composition of the liquid-based material for quality control. An imaging sub-system may include a plurality of illumination sources configured to illuminate the liquid-based material with light, and one or more detectors. The detectors may be configured to detect light reflected from a first surface of the liquid-based material, light reflected from a second surface of the liquid-based material, and/or light transmitted through the first surface and the second surface of the liquid-based material in response to the illumination. An analytics sub-system coupled to the imaging sub-system may be configured to analyze the detected light to determine an optical profile of the liquid-based material, and monitor the optical profile in real-time to detect changes in the optical profile indicative of corresponding changes to a composition of the liquid-based material.
Abstract:
Technologies to generate multimedia data are generally described. In some examples, a multimedia generator may receive initial audio data that may include audio rhythm data. The audio rhythm data may be effective to indicate a pattern of a set of beats. The multimedia generator may also compare the audio rhythm data with video rhythm data, where the video rhythm data may be effective to indicate a change of direction of a set of points in a video segment. The multimedia generator may also identify the video segment based on the comparison of the audio rhythm data with the video rhythm data. The multimedia generator may also map the video segment to at least a portion of the initial audio data to generate the multimedia data.
Abstract:
Technologies are generally described related to a dual channel memory device, system and method of manufacture. Various described devices include utilization of both a front channel and a back channel through a substrate formed underneath a dual gate structure of a semiconductor device. Using two pairs of contacts on opposing sides of the gate structure, where the contact pairs are formed on differently doped layers of the semiconductor device, multiple bits may be stored in the semiconductor device acting as a single memory cell. Memorization may be realized by storing different amount or types of charges on the floating gate, where the charges may impact a conduction status of the channels of the device. By detecting the conduction status of the channels, such as open circuit, close circuit, or high resistance, low resistance, data stored on the device (“0” or “1”) may be detected.
Abstract:
Technologies are generally described to adaptively sample merchant sites linked to payment transactions to gain insight into activities, interactions, and behaviors of visitors within the merchant site. In some examples, a payment network may define a virtual perimeter that represents an area of the merchant site in which to capture selected measurements. The virtual perimeter and measurements may be transmitted to a client application being executed or executing on a portable device associated with a visitor. The client application may capture the measurements and transmit the captured measurements as tracking data to the payment network upon detection of a presence of the portable device within the virtual perimeter. Payment data processed by the client application may also be transmitted to the payment network. The payment network may process the payment and tracking data to perform a business intelligence analysis associated with the merchant site.
Abstract:
Technologies are generally described for displaying a three-dimensional image. Example devices/systems described herein may use a plurality of light guides arranged in an array, and light emissive elements provided along a longitudinal direction of the light guides. A light emission intensity of each of the light emissive elements may be controlled based on an input signal indicative of the object, to generate a three-dimensional image of the object. The three-dimensional image may have a perceived depth in the longitudinal direction determined by light emission intensity ratios between the light emissive elements. The light guides may include at least one of optical fibers, glass rods, glass tubes, transparent-walled channels and elongated voids in a matrix material. Also, the light emissive elements may include at least one of light emitting diodes (LEDs), plasma light emitters, luminescent elements, and light emissive pixels of a flat panel display.
Abstract:
Techniques are generally described that relate to a computer-implemented method of using a virtual device operating in a first computer network to perform a service on behalf of a low-power device operating in a second computer network includes receiving, by the virtual device, device data reports and a device descriptor from the low-power device. The virtual device may be adapted to store the device data reports and/or the device descriptor in computer-readable memory coupled to the virtual device. The virtual device may also be adapted to receive a low-power device service request from a requesting device operating in a third computer network and may determine that the device descriptor indicates that the low-power device is unavailable to respond to the low-power device service request. A response to the low-power device service request may be generated by the virtual device based on the device data reports.
Abstract:
Solid-state barcodes, paints containing the solid-state barcodes, and methods of manufacturing the paint are disclosed. The solid-state barcode may include a core portion and a shell portion substantially surrounding the core portion. One or both of the core portion and the shell portion may include a pattern of two or more regions, the pattern configured to encode information. Such solid-state barcodes can be attached at arbitrary positions on objects by applying the paint containing the barcode onto the objects.
Abstract:
Technologies are generally described for customization of a list of properties associated with media files based at least in part on user's preferences. In some examples, a method may include receiving, by a server, a plurality of user inputs that respectively identify the user's designated favorites from among a plurality of media files; determining, by the server, the user's preferences from among a plurality of properties associated with the user's designated favorites from among the plurality of media files, based at least in part on the received user inputs; and providing, by the server, the user with a list of the plurality of properties based at least in part on the user's preferences from among the plurality of properties.
Abstract:
Technologies are generally described that relate to facilitating evaluation of payment fencing information and determination of rewards. An example method may include receiving, by a device comprising a processor, first electronic information indicative of a purchase for travel by a first entity; and determining second electronic information indicative of a rebate associated with the travel, wherein the determining is based on receipt of payment fencing information related to the travel. In some embodiments, the method includes determining the level of completeness, quality and/or precision of the payment fencing information. For example, the completeness, quality and/or precision can be determined based on a predictable travel range of the first entity or a corresponding travel uncertainty of the first entity.