Abstract:
Systems, devices, and methods are described including implantable radiation sensing devices having exposure determination devices that determines exposure information based on the at least one in vivo measurand output.
Abstract:
Certain embodiments disclosed herein relate to compositions, methods, devices, systems, and products regarding frozen particles. In certain embodiments, the frozen particles include materials at low temperatures. In certain embodiments, the frozen particles provide vehicles for delivery of particular agents. In certain embodiments, the frozen particles are administered to at least one biological tissue.
Abstract:
Described embodiments include a computer-implemented method, device, and computer program product. A computer-implemented method includes electronically receiving a previously prepared estimate of fees and costs to deliver a diagnosis, treatment, or prevention of a particular disease, illness, injury, or other physical or mental impairment (hereafter “healthcare service”) to a particular patient. The computer-implemented method includes electronically receiving data at least partially indicative of the healthcare service provided to the patient to date. The computer-implemented method includes estimating probable fees and costs incurred to date in providing the healthcare service to the particular patient. The estimating is responsive to the received data indicative of at least part of the healthcare service provided to date. The computer-implemented method includes outputting in substantially real time information indicative of the probable fees and costs incurred to date in view of the previous estimate of the fees and costs for providing the healthcare service.
Abstract:
Devices, systems, and methods are described herein for controlling the level of one or more target cell types in the blood fluid and/or lymph fluid of a vertebrate subject. Devices and systems are provided that include a body defining at least one lumen configured for fluid flow; at least one controllable flow barrier to the at least one lumen; one or more sensor configured to detect one or more target cell types in blood fluid or lymph fluid of a vertebrate subject; at least one treatment region disposed within the at least one lumen; at least one reactive component disposed in the at least one treatment region; and at least one controller in communication with the one or more sensor and in communication with the at least one controllable flow barrier to the at least one lumen.
Abstract:
Devices, systems, and methods are described herein for controlling the level of one or more target cell types in the blood fluid and/or lymph fluid of a vertebrate subject. Devices, systems, and methods are provided that include a body defining at least one lumen configured for fluid flow; at least one controllable flow barrier to the at least one lumen; one or more sensor configured to detect one or more target cell types in blood fluid or lymph fluid of a vertebrate subject; at least one treatment region disposed within the at least one lumen; at least one reactive component disposed in the at least one treatment region; and at least one controller in communication with the one or more sensor and in communication with the at least one controllable flow barrier to the at least one lumen.
Abstract:
Systems, devices, methods, and compositions are described for providing an actively-controllable disinfecting implantable device configured to, for example, treat or prevent an infection in a biological subject.
Abstract:
Devices, systems, or methods are disclosed herein for treatment of disease in a vertebrate subject. The device can include a quasi-planar substrate; and one or more laterally-mobile effector molecule types at least partially embedded within the quasi-planar substrate, wherein the one or more laterally-mobile effector molecule types is configured to interact with one or more cell types. The device can further include one or more sensors configured to detect at least one aspect of an interaction between the at least one of the one or more laterally-mobile effector molecule types and the one or more cell types; and a controller in communication with the one or more sensors, wherein the controller is configured to responsively initiate modification of at least one of the one or more laterally-mobile effector molecule types, the quasi-planar substrate, and the one or more cell types.
Abstract:
Exemplary methods, systems and components disclosed herein provide propagation of light signals from an external source to a borehole mining mole which includes an optical/electric transducer configured to provide propulsive power for the borehole mining mole and its associated mineral prospecting tools. Some embodiments include one or more umbilicals connected from a remote source location to an onboard reel incorporated with the borehole mining mole. The umbilicals are spooled outwardly or inwardly from the onboard reel during traverse of the borehole mining mole along a path in an earthen environment.
Abstract:
Methods, computer program products, and systems are described that include monitoring at least one health attribute of an individual during an artificial sensory experience, associating a characteristic of the artificial sensory experience with the at least one health attribute of the individual, and modifying at least one of an inhalation device-dispensed bioactive agent or the artificial sensory experience at least partially based on associating a characteristic of the artificial sensory experience with the at least one health attribute of the individual.
Abstract:
Apparatus, methods, and systems provide emitting, field-adjusting, and focusing of electromagnetic energy. In some approaches the field-adjusting includes providing an extended depth of field greater than a nominal depth of field. In some approaches the field-adjusting includes field-adjusting with a transformation medium, where the transformation medium may include an artificially-structured material such as a metamaterial.