Abstract:
It was difficult to acquire a good CO cleanup efficiency in a hydrogen refining apparatus, for instance, when the start-up and stop operations are frequently repeated.A hydrogen refining apparatus, including a shifter having a shifting catalyst body containing noble metals and metal oxides, and a reforming section for supplying hydrogen gas containing carbon monoxide to the shifter, (1) the temperature of an upstream side of the shifting catalyst body relative to the hydrogen gas flow being substantially between 300° C. and 500° C. and (2) the temperature of a downstream side of the shifting catalyst body relative to the hydrogen gas flow being substantially at 300° C. or less.
Abstract:
A CO removal catalyst of inducing CO shift reaction for allowing water and carbon monoxide to react to produce hydrogen and carbon dioxide, comprising a catalyst carrier having a cerium-zirconium composite oxide and a zirconium oxide and a predetermined noble metal supported on the catalyst carrier, wherein the average particle diameter of the particulate cerium-zirconium composite oxide is greater than the average particle diameter of the particulate zirconium oxide, the average particle diameter of the particulate zirconium oxide is greater than the average particle diameter of the predetermined particulate noble metal and the predetermined noble metal is supported on the catalyst carrier more in the outer part thereof.
Abstract:
Conventional hydrogen purification apparatuses cannot be used satisfactorily for applications in which much time is required for startup of the apparatus, and the apparatus is repeatedly started and stopped at frequent intervals because of complicated handling. In a hydrogen purification apparatus comprising at least a catalysis body removing carbon monoxide from a reformed gas containing hydrogen, carbon monoxide and steam, the catalyst body is constituted by a carrier comprised of a complex oxide in which at least one of Mo, W and Re is compounded with Zr, or comprised of an oxide of one of Mo, W, Re and Zr, and at least one of Pt, Pd, Rh and Ru carried on the surface of the carrier.
Abstract:
A hydrogen generator including a raw material supplying unit supplying a raw material containing a sulfur component and composed of an organic compound, a water supplying unit supplying water, a reformer producing hydrogen gas, the reformer provided with a reforming catalyst to make the raw material and water undergo a reaction, and a carbon monoxide removing unit reducing the content of carbon monoxide in hydrogen gas produced in the reformer, wherein the reforming catalyst is constituted by a carrier composed of platinum and a metal oxide is provided.
Abstract:
In a hydrogen generator according to the invention, a reformer temperature sensor detects the temperature of a reformer at a start of a stop operation of a hydrogen generator. In a controller, a processing and controlling portion compares the detected temperature with first to fourth reference temperatures pre-stored in a storage portion, and determines which of the following conditions is the temperature condition of the hydrogen generator at the stop; a first condition in which water condensation occurs, a second condition in which water condensation and carbon deposition are avoidable, a third condition in which carbon deposition occurs, a fourth condition in which disproportionation reaction occurs, and a fifth condition in which oxidization of catalyst occurs. According to the determination result, an appropriate setting is selected among first to fifth replacement settings pre-stored in the controller corresponding to the first to fifth conditions, and an internal gas replacement operation is performed according to the selected setting.
Abstract:
The present specification disclosed a hydrogen refinement apparatus comprising a reformed gas feeding part containing at least a hydrogen gas and water vapor, and a reaction chamber equipped with a carbon monoxide shifting catalyst body downstream said reformed gas feeding part, wherein said carbon monoxide shifting catalyst body comprises a carrier supporting Pt, the carrier being composed of at least one metal oxide having a BET specific surface area of 10 m2/g or more, and a method for operating the apparatus. The present invention provides improved heat-resistance of the CO shifting catalyst body, and can operate stably even if the apparatus is activated and stopped repeatedly.
Abstract:
The present specification discloses a hydrogen generator for generating a hydrogen gas, comprising at least a fuel supply part for supplying a hydrocarbon type fuel, a fuel combustion part, a water supply part, a gas, mixing part for mixing the fuel and a water, and a reforming part filled with the reforming catalyst, wherein at least one of the gas mixing part and the reforming part is heated by an exhaust gas generated in the combustion part. The hydrogen generator according to the present invention aims to improve the heat efficiency, reducing the heat loss from the apparatus with a simple constitution and collecting the waste heat for an effective use thereof.
Abstract:
A combustion control method for use in a catalytic combustion system having (a) a gaseous mixture inlet port, located at the upstream side of said catalytic combustion system, for the entrance of a fuel-air mixture; (b) an exhaust gas outlet port, located at the downstream side of said catalytic combustion system, for the exit of an exhaust gas; (c) a primary combustion chamber in which a catalyst body is disposed, said catalyst body being formed of a porous base material with numerous communicating holes that supports thereon an oxidation catalyst; (d) a secondary supply port, located downstream of said primary combustion chamber, for the supply of a gaseous mixture or air; and (e) a secondary combustion chamber located downstream of said secondary supply port; comprising such process that an excess air ratio of said primary combustion chamber is initially set above 1 and after the rate of combustion of said secondary combustion chamber exceeds a given level, combustion is made to take place, with the excess air ratio of said primary combustion chamber set below 1.
Abstract:
A fuel cell system includes a reforming unit, a carbon-monoxide decreasing unit, a fuel cell, a burner unit, and a raw gas supply device. At a start-up operation of the fuel cell system, an amount of raw gas supplied from the raw has supply device is adjusted according to an amount of a desorbed raw gas desorbed out of components of the raw gas adsorbed to at least one of the reforming catalyst and a carbon monoxide decreasing catalyst such that a ratio of an amount of the combustion air to an amount of the raw gas in the burner unit falls within a predetermined range.
Abstract:
A hydrogen generator includes: a reformer (102) configured to generate a hydrogen-containing gas by a reforming reaction using a raw material; a combustor (104) configured to heat the reformer; an air supplying device (106) configured to supply combustion air to the combustor; a first heat exchanger (108) configured to recover heat from a flue gas discharged from the combustor; a first heat medium passage (110) through which a first heat medium flows, the first heat medium receiving the heat recovered from the flue gas in the first heat exchanger; a first pump (112) configured to cause the first heat medium in the first heat medium passage to flow; a heat accumulator (140) configured to store the heat recovered by the first heat medium; and a controller (114) configured to cause the first pump to operate in a cooling step that is a step of cooling down at least the reformer by supplying the air from the air supplying device to the combustor in a state where the combustor is not carrying out combustion during a stop processing