Abstract:
This invention relates to a network architecture for data communication between data sources and data destinations via network nodes and at least one data concentrator. According to the invention the nodes (2, 4) are conceived to communicate with a data concentrator (1) in both directions either via a permanently operative network (8) in the multihop mode or via an occasionally operative network (5) in wireless connection with mobile user nodes (6) in the nomadic mode. Means for commutation are provided to detect faulty multihop nodes and to activate nomadic nodes instead until the fault disappears, in order to maintain the overall functionality of the network. Moreover the network according to the invention allows to share the data collected by mobile users with other mobile users, thus forming a peer-to-peer network.
Abstract:
A plurality of memory devices of mixed type (e.g., DRAMs, SRAMs, MRAMs, and NAND-, NOR- and AND-type Flash memories) are serially interconnected. Each device has device type information on its device type. A specific device type (DT) and a device identifier (ID) contained in a serial input (SI) as a packet are fed to one device of the serial interconnection. The device determines whether the fed DT matches the DT of the device. In a case of match, a calculator included in the device performs calculation to generate an ID accompanying the fed DT for another device and the fed ID is latched in a register of the device. In a case of no-match, the ID generation is skipped and no ID is generated for another device. The DT is combined with the generated or the received ID depending on the device type match determination. The combined DT and ID is as a packet transferred to a next device. Such a device type match determination and ID generation or skip are performed in all devices of the serial interconnection. With reference to device type provided to the interconnected devices, IDs are sequentially generated. The SI containing the DT, the ID and an ID generation command is transmitted in a packet basis to a next device.
Abstract:
A method and an apparatus for upgrading an existing service outlet (e.g. LAN, telephone, power or CATV outlet) in a house by adding functionality thereto. The functionality is added by an add-on module, connected electrically and secured mechanically to the existing outlet. Several attachment devices are exampled, including surface attachment, side clamping, snap locking, strap securing and fastening screws. The add-on module may include a service connector for retaining the basic existing outlet function. The module may be attached in a permanent way or by using a detachable solution.
Abstract:
A method and corresponding apparatus for providing a cellular subscriber with access to a WLAN are provided. They involve identifying a multimode mobile terminal, which corresponds to the subscriber and the WLAN from an access request. Based on the identification, the WLAN is authorized to provide the mobile terminal with access. The mobile terminal is then provided with access to the WLAN as a cellular subscriber and enables interoperability between the two networks. For example, the subscriber does not have to supply a credit card to pay for WLAN access directly. Instead, the subscriber pays a cellular network provider, and, in turn, the cellular network provider pays a WLAN provider for the access.
Abstract:
A delay locked loop operates over a wide range of frequencies and has high accuracy, small silicon area usage, low power consumption and a short lock time. The DLL combines an analog domain and a digital domain. The digital domain is responsible for initial lock and operational point stability and is frozen after the lock is reached. The analog domain is responsible for normal operation after lock is reached and provides high accuracy using smaller silicon area and low power.
Abstract:
A flash memory device having at least one bank, where the each bank has an independently configurable page size. Each bank includes at least two memory planes having corresponding page buffers, where any number and combination of the memory planes are selectively accessed at the same time in response to configuration data and address data. The configuration data can be loaded into the memory device upon power up for a static page configuration of the bank, or the configuration data can be received with each command to allow for dynamic page configuration of the bank. By selectively adjusting a page size the memory bank, the block size is correspondingly adjusted.
Abstract:
A voltage down converter (VDC) applicable to high-speed memory devices. The VDC includes a steady driver and active driver along with at least one additional transistor. The steady driver and active driver are coupled by a transistor switch during device start-up to provide fast ramp-up to operating voltage and current. After start-up, the steady driver and active drive function to maintain a steady operating voltage and current. An additional transistor is digitally controlled to drive up operating voltage and current upon issuance of an active command representing read, write, and/or refresh of memory. In this manner, the additional transistor provides fast compensation for fluctuations in operating voltage and current brought on by activity in the memory array.
Abstract:
A semiconductor memory device and system are disclosed. The memory device includes a memory, a plurality of inputs, and a device identification register for storing register bits that distinguish the memory device from other possible memory devices. Circuitry for comparing identification bits in the information signal with the register bits provides positive or negative indication as to whether the identification bits match the register bits. If the indication is positive, then the memory device is configured to respond as having been selected by a controller. If the indication is negative, then the memory device is configured to respond as having not been selected by the controller. A plurality of outputs release a set of output signals towards a next device.
Abstract:
A stack that includes non-volatile memory devices is disclosed. One of the non-volatile memory devices in the stack is a master device, and the remaining memory device or devices is a slave device(s).
Abstract:
A plurality of devices are operated by storing at a device a first ID number received at a first port of the device and a second ID number received at a second port of the device. The device receives a data command through at least one of the first and second ports. The data command has a command ID number. The device executes the data command when at least one of the command ID number is equal to the first ID number when the data command is received at the first port and the command ID number is equal to the second ID number when the data command is received at the second port.