Abstract:
A plasma processing system includes a processing chamber, a substrate holder configured to hold a substrate for plasma processing, and a gas injection assembly. The gas injection assembly includes a first evacuation port located substantially in a center of the gas injection assembly and configured to evacuate gases from a central region of the substrate, and a gas injection system configured to inject gases in the process chamber. The plasma processing system also includes a second evacuation port configured to evacuate gases from a peripheral region surrounding the central region of the substrate.
Abstract:
The invention can provide apparatus and methods for processing substrates and/or wafers in real-time using at least one Direct Current (DC)/Radio Frequency (RF) Hybrid (DC/RFH) processing system and associated Direct Current/Radio Frequency Hybrid (DC/RFH) procedures and DC/RFH process parameters and/or DC/RFH models.
Abstract:
The invention provides a method of processing a substrate using multilayer processing sequences and Multi-Layer/Multi-Input/Multi-Output (MLMIMO) models and libraries that can include one or more masking layer creation procedures, one or more pre-processing measurement procedures, one or more Partial-Etch (P-E) procedures, one or more Final-Etch (F-E) procedures, and one or more post-processing measurement procedures.
Abstract:
A surface wave plasma (SWP) source is described. The SWP source comprises an electromagnetic (EM) wave launcher configured to couple EM energy in a desired EM wave mode to a plasma by generating a surface wave on a plasma surface of the EM wave launcher adjacent the plasma. The EM wave launcher comprises a slot antenna having a plurality of slots. The SWP source further comprises a first recess configuration formed in the plasma surface, wherein the first recess configuration is substantially aligned with a first arrangement of slots in the plurality of slots, and a second recess configuration formed in the plasma surface, wherein the second recess configuration is either partly aligned with a second arrangement of slots in the plurality of slots or not aligned with the second arrangement of slots in the plurality of slots. A power coupling system is coupled to the EM wave launcher and configured to provide the EM energy to the EM wave launcher for forming the plasma.
Abstract:
The invention can provide a method of etch processing a wafer using a Real-Time Parameter Tuning (RTPT) procedure to receive an input message that can include a pass-through message, a real-time feedforward message, or a real-time optimization message, or any combination thereof. The RTPT procedures can use real-time wafer data to create, modify, and/or use etch recipe data, etch profile data, and/or etch model data. In addition, RTPT procedures can use real-time wafer data to create, modify, and/or use process recipe data, process profile data, and/or process model data.
Abstract:
The invention can provide a method of processing a substrate using Spacer-Optimization (S-O) processing sequences and evaluation libraries that can include one or more optimized spacer creation and evaluation procedures. In addition, the S-O processing sequences can include one or more deposition procedures, one or more partial-etch procedures, one or more chemical oxide removal (COR)-etch procedures, one or more optimization procedures, one or more evaluation procedures, and/or one or more verification procedures.
Abstract:
Method and system for producing a neutral beam source is described. The neutral beam source comprises a plasma generation system for forming a first plasma in a first plasma region, a plasma heating system for heating electrons from the first plasma region in a second plasma region to form a second plasma, and a neutralizer grid for neutralizing ion species from the second plasma in the second plasma region. Furthermore, the neutral beam source comprises an electron acceleration member configured to accelerate the electrons from the first plasma region into the second plasma region. Further yet, the neutral beam source comprises a pumping system that enables use of the neutral beam source for semiconductor processing applications, such as etching processes.
Abstract:
The invention can provide a method of processing a substrate using Gate-Optimization processing sequences and evaluation libraries that can include gate-etch procedures, COR-etch procedures, and evaluation procedures.
Abstract:
The invention provides a method of processing a substrate using multilayer processing sequences and Multi-Layer/Multi-Input/Multi-Output (MLMIMO) models and libraries that can include one or more masking layer creation procedures, one or more pre-processing measurement procedures, one or more Partial-Etch (P-E) procedures, one or more Final-Etch (F-E) procedures, and one or more post-processing measurement procedures.
Abstract:
A method for facilitating an ODP (optical digital profile) measurement of a semiconductor wafer. The method includes obtaining real time wafer characteristic data for a measurement site on the wafer and detecting a measured diffraction signal from a structure within the measurement site of the wafer. The measured diffraction signal is matched with a simulated diffraction signal stored in a wafer characteristic dependent profile library. A hypothetical profile structure associated with the simulated diffraction signal in the wafer characteristic dependent profile library is then identified. The real time wafer characteristic data is used to facilitate at least one of the matching and identifying. The real time wafer characteristic data may be real time wafer thickness data.