摘要:
A mixture of at least two types of charged particles of ions having the same value obtained by dividing the electric charge of an ion by the mass of the ion, i.e., a mixture of charged particles including hydrogen molecular ions H.sub.2.sup.+ and deuterium ions D.sup.+, is accelerated in a charged particle accelerator. Since the mass spectrograph unit in the accelerator cannot divide the hydrogen molecular ions H.sub.2.sup.+ and the deuterium ion D.sup.+, both ions are accelerated together. When the hydrogen molecular ion H.sub.2.sup.+ collides against a silicon substrate, it is divided into two hydrogen ions 2H.sup.+. Since the hydrogen ion H.sup.+ and the deuterium ion D.sup.+ have different ranges in silicon, two regions including a great number of crystal defects are formed in the silicon substrate in one ion irradiating step. As a result, at least three regions of different lifetimes of carriers are formed at different depths of the semiconductor substrate.
摘要:
According to one embodiment, the semiconductor device includes a drift region, a first semiconductor region, a second semiconductor region, a main electrode, first gate electrodes and a second gate electrode. The first gate electrodes and the second gate electrode between a pair of first gate electrodes are provided in the drift region. The first semiconductor region is provided between the first gate electrodes and the second gate electrode. The first semiconductor region has a first side surface opposite to the one of the adjacent ones and a second side surface partially opposite to the second gate electrode. The second semiconductor region is selectively provided on the first semiconductor region. The main electrode has a portion directly adjacent to part of the second side surface and the second semiconductor region.
摘要:
A semiconductor device includes: a first insulating layer; a semiconductor layer provided on the first insulating layer; a first semiconductor region selectively provided in the semiconductor layer; a second semiconductor region selectively provided in the semiconductor layer and spaced from the first semiconductor region; a first main electrode provided in contact with the first semiconductor region; a second main electrode provided in contact with the second semiconductor region; a second insulating layer provided on the semiconductor layer; a first conductive material provided in the second insulating layer above a portion of the semiconductor layer located between the first semiconductor region and the second semiconductor region; and a second conductive material provided in a trench provided in a portion of the semiconductor layer opposed to the first conductive material, being in contact with the first conductive material, and reaching the first insulating layer.
摘要:
A semiconductor device includes: a semiconductor layer having a first end portion and a second end portion; a first main electrode provided on the first end portion and electrically connected to the semiconductor layer; a second main electrode provided on the second end portion and electrically connected to the semiconductor layer; a first gate electrode provided via a first gate insulating film in a plurality of first trenches formed from the first end portion toward the second end portion; and a second gate electrode provided via a second gate insulating film in a plurality of second trenches formed from the second end portion toward the first end portion. Spacing between a plurality of the first gate electrodes and spacing between a plurality of the second gate electrodes are 200 nm or less.
摘要:
A transistor comprises: an insulating layer; a semiconductor layer provided on a major surface of the insulating layer; a gate insulating layer provided on the base region; and a gate electrode provided on the gate insulating layer. The semiconductor layer has a source portion having a plurality of source regions of a first conductivity type and a plurality of base contact regions of a second conductivity type, the source regions being alternated with the base contact regions, a drain portion of the first conductivity type, and a base region of the second conductivity type provided between the source portion and the drain portion, the base region being in contact with the source regions and the base contact regions. A junction between the source regions and the base region is closer to the drain portion side than a junction between the base contact regions and the base region.
摘要:
A MEMS (micro electro mechanical system) apparatus is equipped with a light-emitting circuit, having a light-emitting device, to emit light; a light-receiving circuit having a series circuit of series-connected light-receiving devices that receive the emitted light to generate a voltage; and a MEMS assembly driven by the generated voltage.
摘要:
In a power semiconductor device, an n-base is formed on a p-emitter layer. On the n-base layer, a p-base layer, an n-emitter layer, and a high-concentration p-layer are formed laterally. In the p-base layer, an n-source layer is formed a specified distance apart from the n-emitter layer. In the n-emitter layer, a p-source layer is formed a specified distance apart from the high-concentration p-layer. A first gate electrode is formed via a first gate insulating film on the region sandwiched by the n-source layer and the n-emitter layer. A second gate electrode is formed via a second gate insulating film on the region sandwiched by the high-concentration p-layer and the p-source layer. On the p-emitter layer, a first main electrode is formed. A second main electrode is formed so as to be in contact with the p-base layer, the n-source layer, and the p-source layer.
摘要:
A p-type emitter layer 2 is formed in one surface portion of an n.sup.- -type base layer 1 of high resistance. p.sup.+ -type contact layers 2b and n.sup.+ -type current blocking layers 6 are formed in a preset area ratio in the surface area of the p-type emitter layer. A cathode electrode 4 is formed in contact with the contact layer 2b as well as the current blocking layer 6 of the pn junction diode section. With this cathode structure, the electron injection in the ON state can be suppressed so as to reduce the carrier concentration of a portion of the n.sup.- -type base layer 1 lying on the cathode side, and the parasitic transistor effect caused at the time of reverse recovery can be suppressed by provision of the current blocking layer 6.
摘要:
A crimp-type semiconductor device having a non-alloy structure according to this invention has a silicon pellet including a plurality of cathode electrodes and a plurality of gate electrodes arranged to be alternately staggered with the cathode electrodes at the cathode side, and an anode electrode at the anode side. The cathode electrodes are crimped by a cathode electrode post via an electrode member constituted by a thin soft-metal plate and a hard metal plate. The anode electrode is crimped by an anode electrode post via an electrode member. Opposing surfaces of the electrodes, the electrode members, and the electrode posts are not bonded to but crimped in contact with each other. The electrode members are formed to cover the entire surfaces of the cathode electrode and the anode electrode, respectively, and the entire surface of the cathode electrode post and the anode electrode post, respectively. The electrode members and the electrode posts are positioned with respect to each other by positioning guides, respectively.