Abstract:
Provided is an emitting device which is capable of improving the luminous efficiency of an emitting layer formed using a group IV semiconductor material and obtaining an emission spectrum having a narrow band, and a manufacturing method therefor. The emitting device comprises: an emitting layer having a potential confinement structure, comprising: a well region comprising a group IV semiconductor material; and a barrier region being adjacent to the well region and comprising a group IV semiconductor material which is different from the group IV semiconductor material in the well region, wherein: a continuous region from the well region over an interface between the well region and the barrier region to a part of the barrier region comprises fine crystals; and a region in the barrier region, which is other than the continuous region comprising the fine crystals, is amorphous or polycrystalline region.
Abstract:
A surface emitting laser configured by laminating on a substrate a lower reflection mirror, an active layer and an upper reflection mirror includes, in a light emitting section of the upper reflection mirror, a structure for controlling reflectance that is configured by a low reflectance region and a convex high reflectance region formed in the central portion of the low reflectance region, and which oscillates at a wavelength of λ, wherein the upper reflection mirror is configured by a multilayer film reflection mirror based on a laminated structure formed by laminating a plurality of layers, and an absorption layer causing band-to-band absorption is provided in the laminated structure.
Abstract:
An organic electroluminescence element has a layered structure on a surface of a transparent substrate. The layered structure comprises an organic material layer including a light-emitting organic material layer, an opaque electrode layer, an insulating layer, a metal layer and a resin film in order. The organic electroluminescence element is improved in durability because moisture is prevented from permeating into a light-emitting element.
Abstract:
Provided is a process for producing a surface emitting laser including a surface relief structure provided on laminated semiconductor layers, including the steps of transferring, to a first dielectric film, a first pattern for defining a mesa structure and a second pattern for defining the surface relief structure in the same process; and forming a second dielectric film on the first dielectric film and a surface of the laminated semiconductor layers to which the first pattern and the second pattern have been transferred. Accordingly, a center position of the surface relief structure can be aligned with a center position of a current confinement structure at high precision.
Abstract:
A red surface emitting laser element includes a first reflector, a second reflector including a p-type semiconductor multilayer film, an active layer between the first reflector and the second reflector, and a p-type semiconductor spacer layer between the active layer and the second reflector, the p-type semiconductor spacer layer having a thickness of 100 nm or more and 350 nm or less.
Abstract:
A surface emitting laser that oscillates at a wavelength λ includes an upper reflector, a lower reflector, an active layer, and a spacer layer. The spacer layer is a laminated structure that includes a first semiconductor sublayer having a composition of AlxGa1-xAs (1≧x>0) and a second semiconductor sublayer having a composition of AlyGa1-yAs (1>y>0 and x>y).
Abstract translation:以波长λ振荡的表面发射激光器包括上反射器,下反射器,有源层和间隔层。 间隔层是包括具有Al x Ga 1-x As(1≥x> 0)的组成的第一半导体子层和具有Al y Ga 1-y As(1> y> 0和x> y)的组成的第二半导体子层的层叠结构, 。
Abstract:
A surface-emitting laser has an active layer between a first distributed Bragg reflector and a second distributed Bragg reflector. The first distributed Bragg reflector is formed so as to have a resonant mode and a first longitudinal mode different from the resonant mode included in the reflectivity stop band and a second longitudinal mode different from the resonant mode and the first longitudinal mode excluded from the reflectivity stop band. Oscillation is suppressed in the first longitudinal mode and in the second longitudinal mode. As a result, the surface-emitting laser can oscillate in a single longitudinal mode, suppressing longitudinal mode hopping.
Abstract:
A method of measuring a film thickness is disclosed. The method includes a step of forming a ferroelectric capacitor on a substrate, a step of forming an insulating film to cover the ferroelectric capacitor, and a step of optically measuring the thickness of the insulating film on an electrode of the ferroelectric capacitor.
Abstract:
A surface emitting laser which is configured by laminating on a substrate a lower reflection mirror, an active layer, and an upper reflection mirror, which includes, in a light emitting section of the upper reflection mirror, a structure for controlling reflectance that is configured by a low reflectance region and a concave high reflectance region formed in the central portion of the low reflectance region, and which oscillates at a wavelength of λ, wherein the upper reflection mirror is configured by a multilayer film reflection mirror based on a laminated structure formed by laminating a plurality of layers, the multilayer film reflection mirror includes a phase adjusting layer which has an optical thickness in the range of λ/8 to 3λ/8 inclusive in a light emitting peripheral portion on the multilayer film reflection mirror, and an absorption layer causing band-to-band absorption is provided in the phase adjusting layer.
Abstract:
A red surface emitting laser element includes a first reflector, a second reflector including a p-type semiconductor multilayer film, an active layer between the first reflector and the second reflector, and a p-type semiconductor spacer layer between the active layer and the second reflector, the p-type semiconductor spacer layer having a thickness of 100 nm or more and 350 nm or less.