Active ir camouflage device, plasmonic system, and related methods

    公开(公告)号:US11619837B2

    公开(公告)日:2023-04-04

    申请号:US16811250

    申请日:2020-03-06

    Abstract: An active IR camouflage device may include a base layer, a first dielectric layer over the base layer, a phase transition material layer over the first dielectric layer, a second dielectric layer over the phase transition material layer, and a first metal layer over the second dielectric layer and defining a pattern of openings therein. The active IR camouflage device may have circuitry configured to selectively cause a transition from a first phase state to a second phase state of the phase transition material layer to control IR reflectance/emission of a top plasmonic layer, making it appear/disappear from the IR detector/camera. In some embodiments, the active IR camouflage device may also include a second metal layer between the base layer and the first dielectric layer.

    DUAL FUNCTION ENERGY-STORING SUPERCAPACITOR-BASED CARBON FIBER COMPOSITE FOR BODY PANELS OF A VEHICLE

    公开(公告)号:US20230067318A1

    公开(公告)日:2023-03-02

    申请号:US17842145

    申请日:2022-06-16

    Abstract: A dual-function supercapacitor carbon fiber composite stores electrical energy and functions, for example, as the body shell of electric vehicles (EVs). This is achieved with a vertically aligned graphene on carbon fiber electrode, upon which metal oxides were deposited to obtain ultra-high energy density anode and cathode. A high-strength multilayer carbon composite assembly is fabricated using an alternate layer patterning configuration of epoxy and polyacrylamide gel electrolyte. The energized composite delivers a high areal energy density of 0.31 mWh cm−2 at 0.3 mm thickness and showed a high tensile strength of 518 MPa, bending strength of 477 MPa, and impact strength 2666 J/m. To show application in EVs, a toy car body fabricated with energized composite operates using the energy stored inside the frame. Moreover, when integrated with a solar cell, this composite powered an IoT (interne of things) device, showing feasibility in communication satellites.

    MODEL FOR FLUID AND MASS TRANSPORT IN A RECIRCULATING MICROFLUIDIC SYSTEM

    公开(公告)号:US20230043421A1

    公开(公告)日:2023-02-09

    申请号:US17941445

    申请日:2022-09-09

    Abstract: Disclosed herein are microfluidic systems with recirculation of fluid and computer-implemented methods of calculating conditions within the microfluidic systems. The microfluidic systems include a computing device and a microfluidic device having first and second reservoirs, at least one chamber, and a fluid path connecting the first reservoir, the chamber, and the second reservoir. The methods for calculating conditions include receiving a first reservoir fluid volume, a second reservoir fluid volume, a first concentration, and a second concentration. The methods further include receiving a time-dependent imposed pressure difference between the first reservoir and the second reservoir, then determining a hydraulic pressure difference and an effective pressure difference. The effective pressure difference is used to account for reactions occurring within the microfluidic device and to determine the value of the condition within the microfluidic device. Methods of performing an experiment using a microfluidic device with recirculation are also disclosed herein.

Patent Agency Ranking