Abstract:
A composite article includes a substrate and a protective coating on at least a portion of the substrate. The protective coating includes reinforcement particles dispersed within an elastomeric matrix that is modified with a silicon-containing modifier selected from polysilsesquioxane, polyhedral oligomeric silicate and polyhedral oligomeric silsesquioxane (POSS).
Abstract:
A method of fabricating a composite powder includes forming a plurality of loose particles having discrete regions of a first material and discrete regions of a second material that is different than the first material. At least one of the first material and the second material includes a chemical precursor to a third, different material.
Abstract:
A composite article includes a substrate and a protective layer disposed on the substrate. The protective layer has a silicon-aluminum-carbon-nitrogen solid solution composition and microstructure.
Abstract:
A process for applying an oxidation resistant coating to an article includes the steps of mixing at least about 10% by volume to up to about 99% by volume of a slurry at least one silica based material having a viscosity of about 1×102 poise to about 1×107 poise at a temperature of about 1,292° F. (700° C.) to about 3,272° F. (1,800° C.) at least about 1% by volume to up to about 90% by volume of the slurry at least one oxygen scavenger, and a liquid medium to form the slurry; coating an article with the slurry to form a slurry coated article; and heat treating under an inert atmosphere the slurry coated article to form an article having at least one oxidation resistant coating layer containing the at least one oxygen scavenger.
Abstract:
A contaminant removal system for selectively removing contaminants from a fluid stream. The contaminant removal system has a catalytic reactor of the type that is susceptible to deactivating agents. The catalytic reactor is configured to remove contaminants from a fluid stream. The contaminant removal system has a first adsorbent device positioned upstream, with respect to the fluid stream direction, of the catalytic reactor, that is configured to remove the deactivating agents from the fluid stream. The contaminant removal system has a second adsorbent device positioned downstream, with respect to the fluid stream direction, of the catalytic reactor. The second adsorbent device is configured to remove undesirable byproducts that may be generated when the catalytic reactor removes contaminants from the fluid stream.
Abstract:
A catalytic device comprises a mixed structure of photocatalyst and silica. The mixed structure may be comprised of alternating layers of photocatalyst and silica, a layer having a uniform mixture of photocatalyst particles and silica particles, or a layer having a graded mixture of photocatalyst particles and silica particles.
Abstract:
A porous metal oxide is formed by creating a metal oxide material with a hydrolysis reaction in solution. The hydrolysis reaction or reaction products of a metal oxide precursor react simultaneously or in conjunction with a metal salt or a disassociation species of a metal salt. The metal oxide material is conditioned, and is refined to produce metal oxide particles having a porous structure containing crystallites.
Abstract:
A photocatalytic device for reacting with volatile organic compounds includes a photocatalyst and at least one additive, such as hafnium oxide and zirconium oxide, that is capable of forming a stable silicate with silicon dioxide. The additive reacts with volatile silicon-containing compounds to form stable silicate compounds. As a result, the silicon-containing compounds are unavailable for deactivation of the photocatalyst.
Abstract:
A photocatalyst system for volatile organic compounds with two parts that include a photocatalyst layer on a substrate and a porous overlayer. The photocatalyst layer is reactive with volatile organic compounds when UV light is projected on it. The overlayer is situated on the photocatalyst layer. The overlayer is UV transparent and has an interconnected pore network that allows contaminated air to pass through the overlayer. The size and the shape of the interconnected pores acts to selectively exclude certain contaminants that can deactivate the photocatalyst.
Abstract:
A fuel system for an energy conversion device includes a deoxygenator system with an oxygen permeable membrane having a textured surface. A sweep gas and/or vacuum maintains an oxygen concentration differential across the membrane to deoxygenate the fuel. The textured surface increases the surface area of the oxygen permeable membrane. The textured surface of the oxygen permeable membrane is fabricated by pressing the textured surface into the oxygen permeable membrane with a microreplication-based tooling system. Another fabrication method presses the textured surface into a sacrificial film and the oxygen permeable membrane is then formed upon the sacrificial film to transfer the textured surface to the oxygen permeable membrane and the sacrificial film is then subsequently removed. Another fabrication method applies additional material to the oxygen permeable membrane through a porous sacrificial film.