摘要:
Methods and apparatus are disclosed for wirelessly communicating among integrated circuits and/or functional modules within the integrated circuits. A semiconductor device fabrication operation uses a predetermined sequence of photographic and/or chemical processing steps to form one or more functional modules onto a semiconductor substrate. The functional modules are coupled to an integrated waveguide that is formed onto the semiconductor substrate and/or attached thereto to form an integrated circuit. The functional modules communicate with each other as well as to other integrated circuits using a multiple access transmission scheme via the integrated waveguide. One or more integrated circuits may be coupled to an integrated circuit carrier to form Multichip Module. The Multichip Module may be coupled to a semiconductor package to form a packaged integrated circuit.
摘要:
Disclosed herein is a configurable system of wireless-enabled components (WECs) and applications thereof. The system includes a plurality of WECs and a controller. Each WEC comprises a functional resource and is adapted to wirelessly communicate with other WECs. The controller is adapted to dynamically configure the functional resource of each WEC and wireless communications among the plurality of WECs to form a field-programmable communications array. The controller may be one of the plurality of WECs. The plurality of WECs may be located on a single chip, on multiple chips of a single device, or on multiple chips of multiple devices.
摘要:
A Radio Frequency (RF) transceiver Integrated Circuit (IC) includes a first RF transceiver group, a first baseband section, a second RF transceiver group, a second baseband section, local oscillation circuitry, and local oscillation distribution circuitry. The first baseband section communicatively couples to the first RF transceiver group. The second RF transceiver group resides in substantial symmetry with the first RF transceiver group about a center line of symmetry of the RF transceiver IC. The second baseband section communicatively coupled to the second RF transceiver group. The local oscillation distribution circuitry operably couples to the local oscillation generation circuitry, to the first RF transceiver group, and to the second RF transceiver group. The second baseband section may reside in substantial symmetry with the first baseband section about the center line of symmetry of the RF transceiver IC.
摘要:
A down conversion module includes a mixer operable to down convert an amplified receive signal from a low noise amplifier, based on a local oscillation, to produce a mixer output signal. A mixer load section is operable to produce a down converted signal from mixer output at an output of the mixer load section. A direct current (DC) offset cancellation module is operable to measure a DC offset at the output of the mixer load section, to generate cancellation currents and to combine the cancellation currents with the mixer output signal to provide DC offset cancellation.
摘要:
Analog signal paths are utilized between a baseband processor and a radio front end to support high throughput communications for a multiple in multiple out radio transceiver that support communications over two or more antennas. Specifically, analog differential I and Q path communication signals are exchanged between a radio front end core and a baseband processor to maximize throughput capacity for high data rate signals. Along the same lines, the impedances of traces and the interface are matched to reduce I/Q imbalance.
摘要:
A radio frequency (RF) transmission correction module includes an RF transmission error detection module and a correction module. The error detection module includes an RF envelope detector, a signal conversion module, and an error detection module. The RF envelope detector is operably coupled to produce an envelope signal from a transmit RF signal, wherein the envelope signal represents at least one of local oscillation leakage and in-phase (I) and quadrature (Q) imbalance. The signal conversion module is operably coupled to convert the envelope signal into an error signal in accordance with baseband processing of the transmit RF signal. The error detection module is operably coupled to determine at least one of a local oscillation leakage value and an I and Q imbalance value from the error signal. The correction module is operably coupled to produce at least one of a local oscillation leakage correction signal and an I and Q imbalance correction signal based on the at least one of the local oscillation leakage value and the I and Q imbalance value, respectively.
摘要:
An integrated circuit radio transceiver and method therefor includes an integrated circuit radio transceiver operable to provide pre-distortion settings that correspond to specified analog transmit path gain levels. Further, a change in gain is provided solely through digital gain when the new gain is within a specified range. If the gain change is not within the specified range, the gain is provided by a new transmit path gain module and, if necessary, with additional digital gain. Additionally, a new pre-distortion setting is applied to correspond to the new analog transmit path gain setting.
摘要:
A receiver includes a plurality of RF receiver modules, a plurality of analog baseband sections, a plurality of analog to digital conversion sections, and a digital baseband processing module. The RF receiver modules convert inbound RF signals into a plurality of inbound analog signals. When the receiver is in a first mode, one of the plurality of analog baseband sections is active to adjust one of the plurality of inbound analog signals to produce an adjusted inbound analog signal; one of the plurality of analog to digital conversion sections converts the adjusted inbound analog signal into an inbound digital signal; and a portion of the digital baseband processing module is active to convert the inbound digital signal into inbound data.
摘要:
Disclosed herein are systems, apparatuses, and methods for providing a proximity coupling without Ohmic contact. Such a system includes a plurality of wireless-enabled components (WECs) that are wirelessly coupled to each other. Each WEC includes a metal-based element, a substrate, and a semiconductor layer that separates the metal-based element from the substrate. A signal is configured to be transmitted via a proximity coupling (e.g., a magnetic coupling, an electric coupling, and/or an electromagnetic coupling) between the metal-based element and the substrate without an Ohmic contact between the metal-based element and the substrate. In an example, a first subset of the plurality of the WECs is co-located on a first chip, and a second subset of the plurality of the WECs is co-located on a second chip. The first chip and the second chip may be located in a single device or in separate devices.
摘要:
Disclosed herein are systems, apparatuses, and methods for creating a system of wireless-enabled components (WECs). Such a system includes a server and a plurality of wireless-enabled component (WECs). Each WEC includes a functional resource (e.g., a processing resource and/or a memory resource) and is configured for wireless communication with the server and one or more other WECs. A first WEC is configured to wirelessly upload, to the server, an availability of the functional resource of the first WEC. The first WEC is further configured to wirelessly download, from the server, a linking resource for linking with one or more of the plurality of WECs. The plurality of WECs may be located on a single chip, on multiple chips of a single device, or on multiple chips of multiple devices.