摘要:
In part, disclosed are semiconductor processing methods, methods of depositing a tungsten comprising layer over a substrate, methods of depositing a tungsten nitride comprising layer over a substrate, methods of depositing a tungsten silicide comprising layer over a substrate, methods of forming a transistor gate line over a substrate, methods of forming a patterned substantially crystalline Ta2O5 comprising material, and methods of forming a capacitor dielectric region comprising substantially crystalline Ta2O5 comprising material. In one implementation, a semiconductor processing method includes forming a substantially amorphous Ta2O5 comprising layer over a semiconductive substrate. The layer is exposed to WF6 under conditions effective to etch substantially amorphous Ta2O5 from the substrate. In one implementation, the layer is exposed to WF6 under conditions effective to both etch substantially amorphous Ta2O5 from the substrate and deposit a tungsten comprising layer over the substrate during the exposing.
摘要翻译:部分地,公开了半导体处理方法,在衬底上沉积含钨层的方法,在衬底上沉积含氮化钨的层的方法,在衬底上沉积包含硅化钨的层的方法,形成晶体管栅极的方法 在衬底上划线,形成图案化的基本上结晶的Ta 2 O 5的材料的方法,以及形成包含基本上结晶的Ta 2 O 5的材料的电容器电介质区域的方法。 在一个实施方案中,半导体处理方法包括在半导体衬底上形成包含基本非晶态的Ta 2 O 5层。 该层在有效从底物上蚀刻基本无定形Ta 2 O 5的条件下暴露于WF6。 在一个实施方案中,该层在有效地从衬底上蚀刻基本上无定形Ta 2 O 5的条件下暴露于WF6,并在曝光期间在衬底上沉积含钨层。
摘要:
A unique electrochemical process fills oxygen vacancies in dielectrics while reducing oxidation of nearby electrodes and conductors. Preferably, an electromagnetic field or bias is applied to a dielectric. The bias causes oxygen vacancies in the dielectric to migrate to the surface of the dielectric. As the oxygen vacancies migrate toward the surface, oxygen ions fill the oxygen vacancies. In one embodiment, a unique plasma treatment provides the oxygen ions that react with the oxygen vacancies. In another embodiment, a unique electrolysis treatment provides the oxygen ions that react with the oxygen vacancies.
摘要:
The invention comprises methods of forming a conductive contact to a source/drain region of a field effect transistor, and methods of forming local interconnects. In one implementation, a method of forming a conductive contact to a source/drain region of a field effect transistor includes providing gate dielectric material intermediate a transistor gate and a channel region of a field effect transistor. At least some of the gate dielectric material extends to be received over at least one source/drain region of the field effect transistor. The gate dielectric material received over the one source/drain region is exposed to conditions effective to change it from being electrically insulative to being electrically conductive and in conductive contact with the one source/drain region. Other aspects and implementations are contemplated.
摘要:
The invention comprises methods of forming a conductive contact to a source/drain region of a field effect transistor, and methods of forming local interconnects. In one implementation, a method of forming a conductive contact to a source/drain region of a field effect transistor includes providing gate dielectric material intermediate a transistor gate and a channel region of a field effect transistor. At least some of the gate dielectric material extends to be received over at least one source/drain region of the field effect transistor. The gate dielectric material received over the one source/drain region is exposed to conditions effective to change it from being electrically insulative to being electrically conductive and in conductive contact with the one source/drain region. Other aspects and implementations are contemplated.
摘要:
This invention includes methods of forming layers comprising epitaxial silicon, and field effect transistors. In one implementation, a method of forming a layer comprising epitaxial silicon comprises epitaxially growing a silicon-comprising layer from an exposed monocrystalline material. The epitaxially grown silicon comprises at least one of carbon, germanium, and oxygen present at a total concentration of no greater than 1 atomic percent. In one implementation, the layer comprises a silicon germanium alloy comprising at least 1 atomic percent germanium, and further comprises at least one of carbon and oxygen at a total concentration of no greater than 1 atomic percent. Other aspects and implementations are contemplated.
摘要:
This invention includes methods of forming layers comprising epitaxial silicon, and field effect transistors. In one implementation, a method of forming a layer comprising epitaxial silicon comprises epitaxially growing a silicon-comprising layer from an exposed monocrystalline material. The epitaxially grown silicon comprises at least one of carbon, germanium, and oxygen present at a total concentration of no greater than 1 atomic percent. In one implementation, the layer comprises a silicon germanium alloy comprising at least 1 atomic percent germanium, and further comprises at least one of carbon and oxygen at a total concentration of no greater than 1 atomic percent. Other aspects and implementations are contemplated.
摘要:
The invention comprises methods of forming a conductive contact to a source/drain region of a field effect transistor, and methods of forming local interconnects. In one implementation, a method of forming a conductive contact to a source/drain region of a field effect transistor includes providing gate dielectric material intermediate a transistor gate and a channel region of a field effect transistor. At least some of the gate dielectric material extends to be received over at least one source/drain region of the field effect transistor. The gate dielectric material received over the one source/drain region is exposed to conditions effective to change it from being electrically insulative to being electrically conductive and in conductive contact with the one source/drain region. Other aspects and implementations are contemplated.
摘要:
The invention includes methods of forming hafnium-containing materials, such as, for example, hafnium oxide. In one aspect, a semiconductor substrate is provided, and first reaction conditions are utilized to form hafnium-containing seed material in a desired crystalline phase and orientation over the substrate. Subsequently, second reaction conditions are utilized to grow second hafnium-containing material over the seed material. The second hafnium-containing material is in a crystalline phase and/or orientation different from the crystalline phase and orientation of the hafnium-containing seed material. The second hafnium-containing material can be, for example, in an amorphous phase. The seed material is then utilized to induce a desired crystalline phase and orientation in the second hafnium-containing material. The invention also includes capacitor constructions utilizing hafnium-containing materials, and circuit assemblies comprising the capacitor constructions.
摘要:
A deposition method includes positioning a substrate within a deposition chamber defined at least in part by chamber walls. At least one of the chamber walls comprises a chamber surface having a plurality of purge gas inlets to the chamber therein. A process gas is provided over the substrate effective to deposit a layer onto the substrate. During such providing, a material adheres to the chamber surface. Reactive purge gas is emitted to the deposition chamber from the purge gas inlets effective to form a reactive gas curtain over the chamber surface and away from the substrate, with such reactive gas reacting with such adhering material. Further implementations are contemplated.
摘要:
This invention includes gated field effect devices, and methods of forming gated field effect devices. In one implementation, a gated field effect device includes a pair of source/drain regions having a channel region therebetween. A gate is received proximate the channel region between the source/drain regions. The gate has a gate width between the source/drain regions. A gate dielectric is received intermediate the channel region and the gate. The gate dielectric has at least two different regions along the width of the gate. The different regions are characterized by different materials which are effective to define the two different regions to have different dielectric constants k. Other aspects and implementations are contemplated.