摘要:
A semiconductor memory device includes, a) a semiconductor substrate; b) a field effect transistor gate positioned outwardly of the semiconductor substrate; c) opposing active areas formed within the semiconductor substrate on opposing sides of the gate; d) a capacitor electrically connected with one of the active areas; the capacitor comprising an inner storage node, a capacitor dielectric layer, and an outer cell node; the inner storage node electrically connecting with the one active area, the inner storage node having an upper surface at an elevation; e) a bit line; f) a dielectric insulating layer positioned intermediate the bit line and the other active area; and g) an electrically conductive bit line plug extending through the insulating layer to contact with the other active area and electrically interconnect the bit line with the other active area, the bit line plug being homogeneous in composition between the other active area and the elevation of the inner storage node upper surface. A method of producing such a construction is also disclosed.
摘要:
A semiconductor processing method of forming complementary first conductivity type doped and second conductivity type doped active regions within a semiconductor substrate includes, a) providing a semiconductor substrate; b) masking a desired first conductivity type region of the substrate while conducting second conductivity type doping into a desired second conductivity type active region of the substrate; c) providing an insulating layer over the substrate over the desired first conductivity type region and the second conductivity type doped region; d) patterning the insulating layer to provide a void therethrough to the desired first conductivity type region; e) filling the void with a first conductivity type doped polysilicon plug, the plug having a first conductivity type dopant impurity concentration of at least 1.times.10.sup.20 ions/cm.sup.3, the desired first conductivity type region having a first conductivity type dopant concentration prior to the filling step which is in the range of from 0 ions/cm.sup.3 to 1.times.10.sup.19 ions/cm.sup.3 ; and f) annealing the substrate for a period of time effective to out-diffuse first conductivity type dopant impurity from the first conductivity type doped polysilicon plug into the substrate to form the desired first conductivity type active region having a first conductivity type dopant impurity concentration of at least 1.times.10.sup.20 ions/cm.sup.3 in the substrate. Methods of forming CMOS FET transistors, and SRAM and DRAM CMOS circuitry are also disclosed.
摘要翻译:在半导体衬底内形成互补的第一导电类型掺杂和第二导电类型掺杂有源区的半导体处理方法包括:a)提供半导体衬底; b)掩蔽所述衬底的期望的第一导电类型区域,同时将第二导电类型掺杂到所述衬底的期望的第二导电类型有源区; c)在期望的第一导电类型区域和第二导电类型掺杂区域上的衬底上方提供绝缘层; d)图案化绝缘层以提供穿过其到期望的第一导电类型区域的空隙; e)用第一导电型掺杂多晶硅插塞填充空隙,所述插塞具有至少1×10 20个离子/ cm 3的第一导电类型掺杂剂杂质浓度,所述第一导电类型区域在填充步骤之前具有第一导电类型掺杂剂浓度 其范围为0离子/ cm 3至1×10 19离子/ cm 3; 以及f)使所述衬底退火一段时间以有效地将第一导电类型的掺杂杂质从所述第一导电型掺杂多晶硅插塞扩散到所述衬底中,以形成所述第一导电类型有源区,所述第一导电类型的掺杂杂质浓度为 在衬底中至少1×1020离子/ cm3。 还公开了形成CMOS FET晶体管,以及SRAM和DRAM CMOS电路的方法。
摘要:
The disclosure includes preferred semiconductor transistor devices utilizing thin film transistors, as well as preferred methods of forming such devices. Specifically, a bottom thin film transistor gate is formed having a top surface. An insulating filler is provided adjacent the thin film transistor gate to an elevation at least as high as the thin film transistor gate top surface, and subsequently levelled to provide generally planar insulating surfaces adjacent the thin film transistor gate. The planar insulating surfaces are substantially coplanar with the thin film transistor gate top surface. A planar semiconductor thin film is then formed over the thin film transistor gate and over the adjacent planar insulating surfaces. The thin film is doped to form source and drain regions of a thin film transistor which is bottom gated by the thin film transistor gate.
摘要:
A method for forming semiconductor devices includes a low energy implant for tailoring the electrical characteristics of the semiconductor devices. Using the low energy implant, narrow width devices such as access transistors in an SRAM cell, can be fabricated with a low threshold voltage (Vt). The low energy implant is performed on the active areas of a silicon substrate following field isolation and field implant. For an n-conductivity access transistor, the low energy dopant can be an n-type dopant such as phosphorus, arsenic or antimony.
摘要:
A thin film phase change memory may be provided with a layer which changes between amorphous and crystalline states. The threshold voltage of that layer may be increased in a variety of fashions. As a result of the threshold increase, it is possible to transition cells, initially fabricated in the set or low resistance state, into the reset or high resistance state. In one advantageous embodiment, after such initialization and programming, the threshold voltage increase is eliminated so that the cells operate thereafter without the added threshold voltage.
摘要:
Phase change memories may exhibit improved properties and lower cost in some cases by forming the phase change material layers in a planar configuration. A heater may be provided below the phase change material layers to appropriately heat the material to induce the phase changes. The heater may be coupled to an appropriate conductor.
摘要:
A process is provided for forming vertical contacts in the manufacture of integrated circuits and devices. The process eliminates the need for precise mask alignment and allows the etch of the contact hole to be controlled independent of the etch of the interconnect trough. The process includes forming an insulating layer on the surface of a substrate; forming an etch stop layer on the surface of the insulating layer; forming an opening in the etch stop layer; etching to a first depth through the opening in the etch stop layer and into the insulating layer to form an interconnect trough; forming a photoresist mask on the surface of the etch stop layer and in the trough; and continuing to etch through the insulating layer until reaching the surface of the substrate to form a contact hole. The above process may be repeated during the formation of multilevel metal integrated circuits.
摘要:
In a phase change memory including an ovonic threshold switch, conduction around the phase change material layer in the ovonic threshold switch is reduced. In one embodiment, the reduction is achieved by undercutting the conductive layers on either side of the phase change material layer. In another embodiment, an angled ion implantation is carried out which damages the edge regions of the conductive layers that sandwich the phase change material layer.
摘要:
The invention relates to a phase-change memory device. The device includes a lower electrode disposed in a recess of a first dielectric. The lower electrode comprises a first side and a second side. The first side communicates to a volume of phase-change memory material. The second side has a length that is less than the first side. Additionally, a second dielectric may overlie the lower electrode. The second dielectric has a shape that is substantially similar to the lower electrode.The present invention also relates to a method of making a phase-change memory device. The method includes providing a lower electrode material in a recess. The method also includes removing at least a portion of the second side.
摘要:
The present invention relates to a process of forming a phase-change memory. A lower electrode is disposed in a first dielectric film. The lower electrode comprises an upper section and a lower section. The upper section extends beyond the first dielectric film. Resistivity in the upper section is higher than in the lower section. A second dielectric film is disposed over the first dielectric film and has an upper surface that is coplanar with the upper section at an upper surface.