Abstract:
An apparatus is disclosed for converting signals from one digital integrated circuit family to be compatible with another digital integrated circuit family. The apparatus includes a primary interface and a secondary interface to convert a differential output signal from one digital integrated circuit family for use as an input signal by another digital integrated circuit family. The primary and secondary interfaces include gain stages that are configurable to provide rail to rail voltage swings and are characterized as having single pole architectures. The secondary interface may be unterminated such that a substantially equal load is presented to both components of the differential output signal.
Abstract:
There is presented a high bandwidth circuit for high-speed transceivers. The circuit may comprise an amplifier combining capacitor splitting, inductance tree structures, and various bandwidth extension techniques such as shunt peaking, series peaking, and T-coil peaking to support data rates of 45 Gbs/s and above while reducing data jitter. The inductance elements of the inductance tree structures may also comprise high impedance transmission lines, simplifying implementation. Additionally, the readily identifiable metal structures of inductors and t-coils, the equal partitioning of the load capacitors, and the symmetrical inductance tree structures may simplify transceiver implementation for, but not limited to, a clock data recovery circuit.
Abstract:
According to one general aspect, an apparatus may include a clock channel, a shielding tunnel, and clock repeaters. In various embodiments, the clock channel may be configured to carry the clock signal, and may include a portion of a metal layer of an integrated circuit. In some embodiments, the shielding tunnel may be configured to shield, in at least four directions, the clock channel from other signals, and may include portions of a at least three metal layers of the integrated circuit. The shielding tunnel may be connected to the positive and negative supplies in order to provide the required power for the clock repeaters.
Abstract:
An equalization circuit adjusts (e.g., equalizes) an input signal according to the value of one or more adjustment signals (e.g., equalization coefficients) without a multiplication operation. For example, the circuit may add or subtract a value of a coefficient signal to the amplitude of an input signal. Here, whether the coefficient is added or subtracted may depend on the sign of a control signal.
Abstract:
Multiple channel synchronized clock generation scheme. A novel approach is presented herein in which synchronized clock signals are generated that can be used in parallel processing of deserialized signals. When a serial input signal is received, it can be deserialized into a plurality of parallel signals, and each of these parallel signals can be processed at a frequency that is lower than the frequency of the serial signal. Overall, the frequency at which all of the parallel signals are processed can be the same or substantially close to the frequency of the serial signal, so that throughput within a communication system is not compromised or undesirably reduced. This novel approach is operable to perform independent adjustment of the operational parameters within an apparatus that is operable to perform multiple channel synchronized clock generation (e.g., phase rotation and/or division of signals within each of the individual channels can be adjusted independently).
Abstract:
A gating logic receives a non-return-to-zero (NRZ) input signal and couples the NRZ input signal as an NRZ output signal when operating in a NRZ mode of operation and converts the NRZ input signal to a return-to-zero (RZ) output signal when operating in a RZ mode of operation. A circuit coupled to the gating logic receives a clock signal and couples the clock signal to the gating logic to convert the NRZ input signal to the RZ output signal in the RZ mode of operation. In the NRZ mode of operation, the circuit decouples the clock signal and places a predetermined signal state at the gating logic to pass through the NRZ input signal as the NRZ output signal. The circuit receives a select signal to select between the NRZ and RZ modes of operation and the NRZ and RZ modes are obtained by controlling the clock signal to the gating logic.
Abstract:
An analog-to-digital converter (ADC) is provided. The ADC includes a reference voltage generator configured to generate reference voltages, an analog to digital converter core configured to receive an input signal and the reference voltages and to generate a digital signal representative of the input signal, the digital signal having a number of bits, and a controller configured to determine a quality of the input signal, and, based on a quality of the input signal, to control the number of bits of the digital signal and values of the reference voltages.
Abstract:
According to one general aspect, an apparatus may include a terminal configured to receive an analog input signal. In various embodiments, the apparatus may also include a multistage amplifier configured to amplify the analog input signal by an amount of gain. In some embodiments, the apparatus may include a distributed threshold adjuster interspersed between the stages of the multistage amplifier configured to adjust the DC voltage of the analog input signal to facilitate a decision by an analog-to-digital converter (ADC). In one embodiment, the apparatus may include the ADC configured to convert the amplified analog input signal to a digital output signal.
Abstract:
An apparatus and method is disclosed to compensate for one or more offsets in a communications signal. A communications receiver may carry out an offset adjustment algorithm to compensate for the one or more offsets. An initial search procedure determines one or more signal metric maps for one or more selected offset adjustment corrections from the one or more offset adjustment corrections. The offset adjustment algorithm determines one or more optimal points for one or more selected offset adjustment correction based upon the one or more signal maps. The adaptive offset algorithm adjusts each of the one or more selected offset adjustment corrections to their respective optimal points and/or each of one or more non-selected offset adjustment corrections to a corresponding one of a plurality of possible offset corrections to provide one or more adjusted offset adjustment corrections. A tracking mode procedure optimizes the one or more adjusted offset adjustment corrections.
Abstract:
A search engine selects initial coefficients for a receive equalizer. The search engine may be incorporated into a communication receiver that includes a decision feedback equalizer and clock and data recovery circuit. Here, the search engine may initialize various adaptation loops that may control the operation of, for example, a decision feedback equalizer, a clock and data recovery circuit and a continuous time filter. The receiver may include an analog-to-digital converter that is used to generate soft decision data for some of the adaptation loops.