摘要:
This invention relates to oral and intra-articular formulations based on sulphated hyaluronic acid which are effective in the treatment of degenerative osteoarthritis.
摘要:
There is described a new non-woven fabric produced with the electrospinning technique, and the use thereof as new biomaterial for the biomedical and surgical field.
摘要:
The present invention describes a new bioresorbable filler constituted by hyaluronic acid and/or the derivatives thereof structured with/in phospholipid liposomes, which increase the residence time of the starting polymer in situ. Said fillers described herein are substantially intended to increase the soft tissues in aesthetic surgery and dermocosmetics for the correction of mild to medium defects, but because of their special characteristics they can also be used in other fields of application.
摘要:
Tubular structure, whose wall has an unbroken surface consisting essentially of at least one HA derivative and optionally a further polymer of natural, synthetic or semisynthetic origin. Said tubular structure, which is prepared with a very simple process, is used for the preparation of vascular and urethral grafts.
摘要:
The present invention relates to the synthesis of a haemocompatible polymer, consisting of a polyurethane bound covalently to sulphated hyaluronic acid. These sulfated derivatives have anticoagulative, non-thrombogenic, antiviral and anti-inflammatory properties. They also have the ability to inhibit platelet adhesion, aggregation and activation. The invention is particularly advantageous in resisting the enzyme hyaluronidase, therefore ensuring anti-coagulant activities for longer periods of time when compared to similar compounds. This biocompatible polymer material is well suited for surgical or other medicinal uses.
摘要:
An injectable formulation is disclosed for delivery of osteogenic proteins. The formulation comprises a pharmaceutically acceptable admixture of an osteogenic protein; and formulations comprising osteogenic protein, hyaluronic acid derivatives and tricalcium phosphate are also disclosed. Methods for formulating porous injectable gels and pastes from hyaluronic acid are also disclosed.
摘要:
Biocompatible and biodegradable, three-dimensional structures containing hyaluronic acid derivatives, obtained by the technique of precipitation induced by supercritical antisolvent (SAS), can be used in the field of medicine and surgery.
摘要:
The present invention relates to a biological material having a matrix which contains at least one derivative of hyaluronic acid on which endothelial cells, glandular cells such as islets of Langerhans and liver cells, skin adnexa, germinative cells of hair bulbs, and kerinatocytes are grown, optionally in presence of a medium treated with fibroblasts or in a co-culture with fibroblasts. A process for the production of said biologic materials and the use of such materials for human and veterinary applications such as cardiovascular and oncological surgery, in connection with transplants, for enhancing the biological process of tissue vascularization and for aesthetic use, and also for the screening of medicaments or toxic substances and as a support in the process of gene transfection. The biological material is based on an efficacious cell culture and a biocompatible and biodegradable three-dimensional matrix containing a hyaluronic acid derivative.
摘要:
New biomaterials essentially constituted by esterified derivatives of hyaluronic acid or by cross-linked derivatives of hyaluronic acid for use in the surgical sector, particularly for use in the prevention of post-surgical adhesion.
摘要:
A biological material comprising two components is provided containing a first component comprising alternatively (1) a culture of autologous or homologous bone marrow stem cells partially or completely differentiated into specific connective tissue cellular lines or (2) a sole extracellular matrix free from any cellular component secreted by the specific connective tissue cellular lines; and a second component containing a three-dimensional biocompatible and biodegradable matrix consisting of a hyaluronic acid ester having a degree of esterification comprised between 25 and 100%. The specific tissue cell lines are selected from fibroblasts, osteoblasts, myoblasts, adipocytes, chondrocytes and endothelial cells. The biological material is suitable for use as a dermal substitute in cutaneous lesions as well as repairing damaged connective tissue.