Abstract:
A process for fabricating a curved vehicle impact sandwich beam including a micro-truss structure. The method includes positioning a mold in contact with a curved bottom facesheet so that the mold and the bottom facesheet define a reservoir. The reservoir is filled with a liquid photo-polymer resin and a mask is positioned over the reservoir. A series of UV light sources are provided on a mounting member relative to the mask and the mounting member is flexed to conform to the shape of the bottom facesheet. Light from UV sources shines through apertures in the mask to cure and form polymerized struts in the reservoir to define the micro-truss structure formed to the facesheet.
Abstract:
A cover covering an object includes an inner surface of the cover facing the object and spaced from the object, and an outer surface of the cover opposite the inner surface. A local energy absorber is operatively attached to the inner surface of the cover. The local energy absorber includes an energy absorbing core layer operatively attached to the inner surface of the cover and a frangible face sheet layer attached to the energy absorbing core layer facing the object. The frangible face sheet layer is to initiate fracture of the frangible face sheet layer during an impact applied to the outer surface defining an impact event having a duration of less than 20 milliseconds.
Abstract:
Methods for welding sandwich structures together, especially vehicle structures, where the structures include two opposing face sheets with a core, such as a micro-truss core, therebetween. In one embodiment, two sandwich structures are butt welded together. A cooling fluid barrier is provided at an end of the core between the face sheets to prevent cooling fluid from entering the core during the welding process, where the cooling barrier can be a micro-truss structure and can include cooling fluid channels. A welding insert is inserted into the end of one of the structures adjacent to the cooling barrier, and is welded to the other structure to secure the structures together.
Abstract:
A method for providing localized stiffening of a vehicle trim panel using a plurality of discrete stiffening elements. The method includes selectively placing one or more of the discrete stiffening elements on the panel and then bonding the stiffening elements to the panel.
Abstract:
A technique for providing localized stiffening of a vehicle trim panel, especially for high curvature areas. The vehicle trim panel includes an outer panel having an outer show surface and an inner surface. A plurality of discrete reinforcement elements are bonded to the inner surface of the outer panel at locations where localized stiffening is desired. The discrete elements can come in a variety of different shapes and sizes, where the combination of elements and the number of elements is selected for a particular trim panel stiffness.
Abstract:
A support system includes a support, a root magnet, an object, and a cover magnet. The root magnet is fixedly attached to the support. The cover magnet is fixedly attached to the object. The root magnet and the cover magnet are configured to be magnetically attracted to one another such that the object is magnetically attached to the support when the root magnet and the cover magnet are aligned with one another in an attachment arrangement. The root magnet and the cover magnet are configured to magnetically repel one another such that the object is detached from the support when the root magnet and the cover magnet are unaligned with one another in a detachment arrangement.
Abstract:
A single input, multi-output drive system adapted for use, for example, with a power seat or a vehicular door assembly, includes an input power source, such as a PMDC motor, and at least one transmission further including a plurality of output elements shiftable between engaged and disengaged conditions relative to the source, so as to be selectively driven thereby, and drivenly coupled, for example, to various functions of the power seat or door assembly, and a plurality of active material actuators drivenly and individually coupled to an associated one of the output elements, and configured to selectively engage the associated output element and input source.
Abstract:
A releasable connection connects a first component to a second component. The second component includes and is manufactured from a Shape Memory Polymer (SMP), and defines a pocket. The first component includes a portion disposed within the pocket. The pocket is deformed from an initial shape permitting insertion of the portion into the pocket to assembly the releasable connection into a connected shape wherein the pocket is deformed to secure the first component relative to the second component. The pocket is transformed from the initial shape into the connected shape by heating the SMP material of the second component to a switching temperature. Re-heating the SMP second component to the switching temperature returns the pocket back to the initial shape from the connected shape to disassembly the releasable connection.
Abstract:
A system, method, and computer storage configured for determining period-ending positions of multiple parts movable by select actuation of corresponding active materials. The operations include receiving, from a work-source sensor, work-source input indicating a distance moved by the work source and a direction of the movement, and determining, based on the work-source input and a first and second status histories, corresponding to a first and a second part, respectively, first and second distances travelled by the parts, respectively. Operations also include calculating, based on the first and second distances determined and first and second period-starting positions, corresponding to the first and second parts, respectively, first and second period-ending positions for the first and second parts, respectively.
Abstract:
A load-carrying active material assembly and a method of preparing such an active material assembly suitable for attachment to a movable component of a mechanism is described. The assembly includes a shape memory alloy (SMA) element, a connector adapted to engage the moveable component mechanically crimped to the SMA element, and a filler material disposed intermediate the connector and SMA element. The filler may be a solder or a polymer. Methods for appropriately distributing the filler material and for promoting good adhesion of the filler to the SMA element and the connector are described.