Abstract:
Embodiments disclosed herein include electronic packages and methods of forming such structures. In an embodiment, an electronic package comprises a package substrate, a first die over the package substrate, and a second die over the package substrate. In an embodiment, the electronic package further comprises an optical waveguide on the package substrate. In an embodiment, a first end of the optical waveguide is below the first die and a second end of the optical waveguide is below the second die. In an embodiment, the optical waveguide communicatively couples the first die to the second die.
Abstract:
Embodiments disclosed herein include photonics package with Faraday rotators to improve efficiency. In an embodiment, a photonics package comprises a package substrate and a compute die over the package substrate. In an embodiment, the photonics package further comprises a photonics die over the package substrate. In an embodiment, the compute die is communicatively coupled to the photonics die by a bridge in the package substrate. In an embodiment, the photonics package further comprises an integrated heat spreader (IHS) over the package substrate, and a Faraday rotator passing through the IHS and optically coupled to the photonics die.
Abstract:
Embodiments disclosed herein include electronic packages with fin pitch first level interconnects. In an embodiment, the electronic package comprises a die and a package substrate attached to the die by a plurality of first level interconnects (FLIs). In an embodiment, individual ones of the plurality of FLIs comprise, a first pad on the package substrate, a solder on the first pad, a second pad on the die, and a bump on the second pad. In an embodiment, the bump comprises a porous nanostructure, and the solder at least partially fills the porous nanostructure.
Abstract:
Embodiments disclosed herein include electronic packages and methods of making such packages. In an embodiment, a package substrate comprises a substrate comprising a first dielectric material, a first trace embedded in the substrate, and a patch in direct contact with the first trace. In an embodiment, the patch comprises a second dielectric material that is different than the first dielectric material.
Abstract:
A filter structure comprises a first dielectric buildup film. A second dielectric buildup film is over the first dielectric buildup film, the second dielectric buildup film including a metallization catalyst. A trench is in the second dielectric buildup film. A metal is selectively plated to sidewalls of the trench based at least in part on the metallization catalyst. A low-loss buildup film is over the metal that substantially fills the trench.
Abstract:
A thin-film insulator comprises a first electrode over a substrate. A photo up-converting material is over the first electrode. A cured photo-imageable dielectric (PID) containing a high-k filler material is over the photo up-converting material, wherein the cured PID is less than 4 μm in thickness, and a second electrode is over the cured PID.
Abstract:
Embodiments disclosed herein include electronic packages with a ground plate embedded in the solder resist that extends over signal traces. In an embodiment, the electronic package comprises a substrate layer, a trace over the substrate layer, and a first pad over the substrate layer. In an embodiment, a solder resist is disposed over the trace and the first pad. In an embodiment a trench is formed into the solder resist, and the trench extends over the trace. In an embodiment, a conductive plate is disposed in the trench, and is electrically coupled to the first pad by a via that extends from a bottom surface of the trench through the solder resist.
Abstract:
Embodiments disclosed herein include electronic packages and methods of forming such packages. In an embodiment, the electronic package comprises a substrate and a conductive feature over the substrate. In an embodiment, a metallic mask is positioned over the conductive feature. In an embodiment, the metallic mask extends beyond a first edge of the conductive feature and a second edge of the conductive feature.
Abstract:
A build-up layer may be fabricated by forming a microelectronic dielectric layer comprising a dielectric material with a metallization catalyst dispersed therein, forming a primer layer on the microelectronic dielectric layer, and forming a recess through the primer layer and into the dielectric material layer. An activation layer may be formed in or on the exposed microelectronic dielectric layer within the recess, wherein the primer layer acts as a mask. A metal layer may be formed on the activation layer, such as with an electroless process. Thus, the resolution of the metal layer deposition may be precisely controlled by the process used to form the recess.