SPLIT POLY-SiGe/POLY-Si ALLOY GATE STACK
    51.
    发明申请
    SPLIT POLY-SiGe/POLY-Si ALLOY GATE STACK 失效
    分散多晶硅/多晶硅合金栅极堆叠

    公开(公告)号:US20080200021A1

    公开(公告)日:2008-08-21

    申请号:US12104570

    申请日:2008-04-17

    IPC分类号: H01L21/3205

    摘要: A multi-layered gate electrode stack structure of a field effect transistor device is formed on a silicon nano crystal seed layer on the gate dielectric. The small grain size of the silicon nano crystal layer allows for deposition of a uniform and continuous layer of poly-SiGe with a [Ge] of up to at least 70% using in situ rapid thermal chemical vapor deposition (RTCVD). An in-situ purge of the deposition chamber in a oxygen ambient at rapidly reduced temperatures results in a thin SiO2 or SixGeyOz interfacial layer of 3 to 4A thick. The thin SiO2 or SixGeyOz interfacial layer is sufficiently thin and discontinuous to offer little resistance to gate current flow yet has sufficient [O] to effectively block upward Ge diffusion during heat treatment to thereby allow silicidation of the subsequently deposited layer of cobalt. The gate electrode stack structure is used for both nFETs and pFETs.

    摘要翻译: 在栅极电介质上的硅纳米晶种子层上形成场效应晶体管器件的多层栅电极堆叠结构。 硅纳米晶体层的小晶粒尺寸允许使用原位快速热化学气相沉积(RTCVD)沉积高达至少70%的[Ge]的均匀且连续的多晶硅层。 在快速降低的温度下在氧气环境中原位吹扫沉积室导致薄的SiO 2或Si x O x O O 3至4A厚的界面层。 薄的SiO 2或Si x Si 2 O 3界面层足够薄且不连续以提供很小的电阻 到栅极电流仍具有足够的[O]以在热处理期间有效地阻挡Ge扩散,从而允许后续沉积的钴的硅化物。 栅电极堆叠结构用于nFET和pFET两者。

    Strained silicon-channel MOSFET using a damascene gate process
    56.
    发明授权
    Strained silicon-channel MOSFET using a damascene gate process 失效
    应变硅沟道MOSFET使用镶嵌栅极工艺

    公开(公告)号:US06916694B2

    公开(公告)日:2005-07-12

    申请号:US10650400

    申请日:2003-08-28

    IPC分类号: H01L21/336 H01L21/84

    摘要: The present invention provides a method using a damascene-gate process to improve the transport properties of FETs through strain Si. Changes in mobility and FET characteristics are deliberately made in a Si or silicon-on-insulator (SOI) structure through the introduction of local strain in the channel region, without introducing strain in the device source and drain regions. The method has the advantage of not straining the source and drain regions resulting in very low leakage junctions and also it does not require any special substrate preparation like the case of a strained Si/relaxed SiGe system. Moreover, the method is compatible with existing mainstream CMOS processing. The present invention also provides a CMOS device that has a localized strained Si channel that is formed using the method of the present invention.

    摘要翻译: 本发明提供了一种使用镶嵌栅极工艺来改善FET通过应变Si的传输特性的方法。 迁移率和FET特性的变化是通过在沟道区域中引入局部应变而在Si或绝缘体上硅(SOI)结构中作出的,而不会在器件源极和漏极区域引入应变。 该方法的优点是不会使源极和漏极区域产生非常低的泄漏接头,并且也不需要像应变Si /弛豫SiGe系统那样的任何特殊的衬底制备。 此外,该方法与现有的主流CMOS处理兼容。 本发明还提供一种CMOS器件,其具有使用本发明的方法形成的局部应变Si沟道。

    Method to achieve increased trench depth, independent of CD as defined by lithography
    58.
    发明授权
    Method to achieve increased trench depth, independent of CD as defined by lithography 失效
    实现增加沟槽深度的方法,与光刻所定义的CD无关

    公开(公告)号:US06821864B2

    公开(公告)日:2004-11-23

    申请号:US10093789

    申请日:2002-03-07

    IPC分类号: H01L2176

    摘要: A method of forming at least one deep trench structure having an increased trench depth is provided. The method includes providing at least one deep trench having sidewalls that extend to a common bottom wall in a surface of a substrate. Each deep trench has initial dimensions that are wider than targeted dimensions for the deep trenches. To reduce the initial dimensions to that of the targeted dimensions, an epitaxial silicon film is formed selectively or non-selectively on at least some portions of the sidewalls using a low-temperature ultra-high vacuum epitaxial silicon growth tehnique.

    摘要翻译: 提供了形成具有增加的沟槽深度的至少一个深沟槽结构的方法。 该方法包括提供至少一个具有延伸到衬底表面中的公共底壁的侧壁的深沟槽。 每个深沟槽的初始尺寸比深沟槽的目标尺寸宽。 为了将初始尺寸减小到目标尺寸的尺寸,使用低温超高真空外延硅生长技术在侧壁的至少一些部分上选择性地或非选择性地形成外延硅膜。

    Structure having refractory metal film on a substrate
    59.
    发明授权
    Structure having refractory metal film on a substrate 有权
    在基板上具有难熔金属膜的结构

    公开(公告)号:US06579614B2

    公开(公告)日:2003-06-17

    申请号:US09814766

    申请日:2001-03-23

    IPC分类号: B32B900

    摘要: A method of treating structures (and the structure formed thereby), so as to prevent or retard the oxidation of a metal film, and/or prevent its delamination a substrate, includes providing a structure including a refractory metal film formed on a substrate, placing the structure into a vessel having a base pressure below approximately 10−7 torr, exposing the structure to a silane gas at a sufficiently high predetermined temperature and predetermined pressure to cause formation of a metal silicide layer on the refractory metal film, and exposing the structure to a second gas at a sufficiently high temperature and pressure to nitride the metal silicide layer into a nitrided layer.

    摘要翻译: 一种处理结构(及其形成的结构)的方法,以防止或延缓金属膜的氧化和/或防止其基板的分层,包括提供包括在基板上形成的难熔金属膜的结构,放置 将结构转换成基本压力低于约10 -7乇的容器,将结构暴露于足够高的预定温度和预定压力下的硅烷气体,以在难熔金属膜上形成金属硅化物层,并使结构暴露 以足够高的温度和压力将第二气体氮化成氮化层。

    Method for low temperature selective growth of silicon or silicon alloys
    60.
    发明授权
    Method for low temperature selective growth of silicon or silicon alloys 失效
    硅或硅合金的低温选择性生长方法

    公开(公告)号:US5565031A

    公开(公告)日:1996-10-15

    申请号:US390132

    申请日:1995-02-17

    摘要: Epitaxial and polycrystalline layers of silicon and silicon-germanium alloys are selectively grown on a semiconductor substrate or wafer by forming over the wafer a thin film masking layer of an oxide of an element selected from scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium; and then growing the epitaxial layer over the wafer at temperatures below 650.degree. C. The epitaxial and polycrystalline layers do not grow on the masking layer. The invention overcomes the problem of forming epitaxial layers at temperatures above 650.degree. C. by providing a lower temperature process.

    摘要翻译: 通过在晶片上形成选自钪,钇,镧,铈,镨,钕,钕,钕等的元素的氧化物的薄膜掩蔽层,选择性地在半导体衬底或晶片上生长硅和硅 - 锗合金的外延和多晶层, 钐,铕,钆,铽,镝,钬,铒,ium,镱和镥; 然后在低于650℃的温度下在晶片上生长外延层。外延层和多晶层不会在掩模层上生长。 本发明克服了通过提供较低温度的工艺在高于650℃的温度下形成外延层的问题。