摘要:
The stereochemical structure necessary for preparation of perpendicularly arranged cores is provided by a compound of the formula ##STR1## wherein X is a reactive group through which polymeric subunits can be bonded to the compound. In particular, X is advantageously Br. This compound can be synthesized by the reaction of tetrakis(3'-trimethylsilyl-2'-propynyl)silane with zirconocene dichloride and n-butyllithium and adding sulfur monochloride to the reaction product. This produces an adduct in which X is SiMe.sub.3. This adduct may be converted to the bromo compound by reaction with bromine. The tetrakis(3'-trimethylsilyl-2-propynyl)silane may be prepared by forming a magnesium Grignard reagent from 3-bromo-1-trimethylsilylpropyne and reacting the Grignard reagent with silicon tetrachloride.
摘要:
The present invention relates to ceramic materials containing a homogeneous dispersion of metal particles, particularly sol-gel ceramic materials, a method of preparing the same, and processes for hydrogenating and oxidizing organic compounds using the same.
摘要:
In some embodiments, the present disclosure pertains to methods of producing a graphene hybrid material by exposing a graphene precursor material to a laser source to form a laser-induced graphene, where the laser-induced graphene is derived from the graphene precursor material. The methods of the present disclosure also include a step of associating a pseudocapacitive material (e.g., a conducting polymer or a metal oxide) with the laser-induced graphene to form the graphene hybrid material. The formed graphene hybrid material can become embedded with or separated from the graphene precursor material. The graphene hybrid materials can also be utilized as components of an electronic device, such as electrodes in a microsupercapacitor. Additional embodiments of the present disclosure pertain to the aforementioned graphene hybrid materials and electronic devices.
摘要:
In some embodiments, the present disclosure pertains to methods of capturing CO2 from an environment by hydrating a porous material with water molecules to the extent thereby to define a preselected region of a plurality of hydrated pores and yet to the extent to allow the preselected region of a plurality of pores of the porous material to uptake gas molecules; positioning the porous material within a CO2 associated environment; and capturing CO2 by the hydrated porous material. In some embodiments, the pore volume of the hydrated porous material includes between 90% and 20% of the pre-hydrated pore volume to provide unhydrated pore volume within the porous material for enhanced selective uptake of CO2 in the CO2 associated environment. In some embodiments, the step of capturing includes forming CO2-hydrates within the pores of the porous material, where the CO2.nH2O ratio is n
摘要:
In some embodiments, the present disclosure pertains to methods of forming a reinforcing material by: (1) depositing a first material onto a catalyst surface; and (2) forming a second material on the catalyst surface, where the second material is derived from and associated with the first material. In some embodiments, the first material includes, without limitation, carbon nanotubes, graphene nanoribbons, boron nitride nanotubes, chalcogenide nanotubes, carbon onions, and combinations thereof. In some embodiments, the formed second material includes, without limitation, graphene, hexagonal boron nitride, chalcogenides, and combinations thereof. In additional embodiments, the methods of the present disclosure also include a step of separating the formed reinforcing material from the catalyst surface, and transferring the separated reinforcing material onto a substrate without the use of polymers. Additional embodiments of the present disclosure pertain to reinforcing materials formed by the aforementioned methods.
摘要:
In some embodiments, the present disclosure pertains to methods of forming single-crystal graphenes by: (1) cleaning a surface of a catalyst; (2) annealing the surface of the catalyst; (3) applying a carbon source to the surface of the catalyst; and (4) growing single-crystal graphene on the surface of the catalyst from the carbon source. Further embodiments of the present disclosure also include a step of separating the formed single-crystal graphene from the surface of the catalyst. In some embodiments, the methods of the present disclosure also include a step of transferring the formed single-crystal graphene to a substrate. Additional embodiments of the present disclosure also include a step of growing stacks of single crystals of graphene.
摘要:
In some embodiments, the present disclosure pertains to methods of capturing a gas from an environment by associating the environment (e.g., a pressurized environment) with a porous carbon material that comprises a plurality of pores and a plurality of nucleophilic moieties. In some embodiments, the associating results in sorption of gas components (e.g., CO2 or H2S) to the porous carbon materials. In some embodiments, the methods of the present disclosure also include a step of releasing captured gas components from porous carbon materials. In some embodiments, the releasing occurs without any heating steps by decreasing environmental pressure. In some embodiments, the methods of the present disclosure also include a step of disposing released gas components and reusing porous carbon materials. Additional embodiments of the present disclosure pertain to porous carbon materials that are used for gas capture.
摘要:
Provided are methods of making graphene-carbon nanotube hybrid materials. Such methods generally include: (1) associating a graphene film with a substrate; (2) applying a catalyst and a carbon source to the graphene film; and (3) growing carbon nanotubes on the graphene film. The grown carbon nanotubes become covalently linked to the graphene film through carbon-carbon bonds that are located at one or more junctions between the carbon nanotubes and the graphene film. In addition, the grown carbon nanotubes are in ohmic contact with the graphene film through the carbon-carbon bonds at the one or more junctions. The one or more junctions may include seven-membered carbon rings. Also provided are the formed graphene-carbon nanotube hybrid materials.
摘要:
Various embodiments of the present disclosure pertain to methods of making magnetic carbon nanoribbons. Such methods generally include: (1) forming carbon nanoribbons by splitting carbon nanomaterials; and (2) associating graphene nanoribbons with magnetic materials, precursors of magnetic materials, or combinations thereof. Further embodiments of the present disclosure also include a step of reducing the precursors of magnetic materials to magnetic materials. In various embodiments, the associating occurs before, during or after the splitting of the carbon nanomaterials. In some embodiments, the methods of the present disclosure further comprise a step of (3) functionalizing the carbon nanoribbons with functionalizing agents. In more specific embodiments, the functionalizing occurs in situ during the splitting of carbon nanomaterials. In further embodiments, the carbon nanoribbons are edge-functionalized. Additional embodiments of the present disclosure pertain to magnetic carbon nanoribbon compositions that were formed in accordance with the methods of the present disclosure.
摘要:
In various embodiments, the present disclosure provides methods of forming graphene films by: (1) depositing a non-gaseous carbon source onto a catalyst surface; (2) exposing the non-gaseous carbon source to at least one gas with a flow rate; and (3) initiating the conversion of the non-gaseous carbon source to the graphene film, where the thickness of the graphene film is controllable by the gas flow rate. Additional embodiments of the present disclosure pertain to graphene films made in accordance with the methods of the present disclosure.