Abstract:
An apparatus may include a transceiver operable to receive a downlink message from a base station for a serving cell, the downlink message allocating a set of control parameters. The apparatus may also include a processor circuit communicatively coupled to the transceiver and an uplink power control module operable on the processor circuit to read the set of control parameters, and apply a signal-to-noise-and-interference (SINR) parameter based on the received set of control parameters to determine physical uplink shared channel (PUSCH) power to be applied for a PUSCH transmission. Other embodiments are disclosed and claimed.
Abstract:
The various inventive embodiments relate to arrangement of information elements (IEs) for persistent and/or dynamic allocations in a wireless broadband network and include optimization techniques to eliminate the repetitive information fields from the downlink (DL)-Persistent-IEs, uplink (UL)-Persistent-IEs, DL-IEs, and UL-IEs. Elimination of repetitive information fields reduces MAP overhead. In addition embodiments relate to methods to use the same hybrid automatic repeat request (HARQ) region to contain persistent as well as non-persistent allocations. The use of the same HARQ region for persistent as well as non-persistent allocations further reduces the MAP overhead as it requires a single header to define the HARQ region instead of the two headers that are required to define two different HARQ regions: one for persistent allocation and the second one for non-persistent allocations.
Abstract:
Technology for communicating enhanced physical downlink control channels (ePDCCHs) configured for inter-cell interference coordination (ICIC) for a plurality of cells in a physical resource block (PRB) is disclosed. One method can include a node mapping a serving cell control channel element (CCE) in an serving cell ePDCCH in a PRB and a coordination cell CCE in a coordination cell ePDCCH in the PRB. The node can transmit the map of the serving cell CCE and the coordination cell CCE to a wireless device.
Abstract:
A method, system, apparatus and article are described for managing enhanced multicast broadcast services. In some embodiments, for example, a first connection may be established using a first wireless communication protocol, scheduling information for one or more multicast or broadcast data services may be received using the first wireless communication protocol, one or more of the multicast or broadcast data services may be selected, and a second connection using a second wireless communication protocol may be established to receive the one or more selected multicast or broadcast data services. Other embodiments are described and claimed.
Abstract:
Techniques are described that can be used to assign identifiers to carriers of a multi-carrier mobile station. In some cases, each carrier of the mobile station is assigned the same identifiers. In some cases, each carrier of the mobile station is assigned a unique identifier on each channel.
Abstract:
Embodiments of a mobile station and a method performed by a base station for transmitting a paging message to an idle-mode mobile station are disclosed herein. In some embodiments, a multicarrier paging information (MC-PAG-Info) message is transmitted to indicate a time-slot and paging carrier for a subsequent transmission of a paging message to an idle-mode mobile station. The idle-mode mobile station may monitor the indicated paging carrier during the indicated time-slot of a paging listening interval for receipt of a paging message directed to the idle-mode mobile station. In some embodiments, the indicated time-slot and the paging carrier are determined by the idle-mode mobile station using a device identifier of the idle-mode mobile station and hash modulo parameters provided within the paging information message.
Abstract:
Briefly, in accordance with one or more embodiments, a mobile station receives a location beacon transmitted from multiple base stations based on a transmission plan for a predefined downlink location based services zone in the superframes of a signal frame structure. The transmission plan includes spreading transmissions of the location beacon that are unique to respective base stations. The mobile station identifies the base stations based on the respective location beacons and the transmission plan. The mobile station identifies a present location based on the location beacons and the identities of the base stations that from which the location beacons were received.
Abstract:
Embodiments of a system and methods for improving radio link reliability using multi-carrier capability in wireless systems are generally described herein. Other embodiments may be described and claimed.
Abstract:
Embodiments of the present invention provide a virtual multicarrier design for orthogonal frequency division multiple access communications. Other embodiments may be described and claimed.
Abstract:
A communication system is used to transmit and receive data on a plurality of relatively narrow-band signals and wideband signals. The two signal types share a common electromagnetic spectrum by employing spreading gain and maintaining orthogonality between simultaneously transmitted wideband and narrow-band signals. Signal orthogonality is maintained by selectively choosing orthogonal codes and aligning or spacing a wideband carrier frequency with respect to the narrow-band carrier frequencies in accordance with the ratio of the wideband to the narrow-band chip frequencies. A pilot signal is preferably transmitted contemporaneously with the transmission of the first spread signal, and a control date signal, associated with a plurality of users on the first bandwidth, is transmitted on a common control channel using a single Walsh code that is shared by a plurality of users in a TDMA protocol.