Abstract:
Methods and metrology modules and tools are provided, which minimize an estimated overlay variation measure at misalignment vector values obtained from a derived functional form of an overlay linear response to non-periodic effects. Provided methods further quantifying target noise due to the non-periodic effects using multiple repeated overlay measurements of the target cells, calculating an ensemble of overlay measurements between the cells over the multiple measurement repeats and expressing the target noise as a statistical derivative of the calculated overlay measurements. Sub-ensembles may be selected to further characterize the target noise. Various outputs include optimized scanning patterns, target noise metrics and recipe and target optimization.
Abstract:
Metrology tools and methods are provided, which estimate the effect of topographic phases corresponding to different diffraction orders, which result from light scattering on periodic targets, and adjust the measurement conditions to improve measurement accuracy. In imaging, overlay error magnification may be reduced by choosing appropriate measurement conditions based on analysis of contrast function behavior, changing illumination conditions (reducing spectrum width and illumination NA), using polarizing targets and/or optical systems, using multiple defocusing positions etc. On-the-fly calibration of measurement results may be carried out in imaging or scatterometry using additional measurements or additional target cells.
Abstract:
The disclosure is directed to a system and method of controlling spectral attributes of illumination. According to various embodiments, a portion of illumination including an excluded selection of illumination spectra is blocked, while another portion of the illumination including a transmitted selection of illumination spectra is directed along an illumination path. In some embodiments, optical metrology is performed utilizing the spectrally controlled illumination to enhance measurement capability. For instance, the spectral attributes of illumination utilized to analyze different portions of a sample, such as different semiconductor layers, may be selected according to certain measurement characteristics associated with the analyzed portions of the sample.
Abstract:
Metrology targets, design files, and design and production methods thereof are provided. Metrology targets comprising at least one reflection-symmetric pair of reflection-asymmetric structures are disclosed. The structures may or may not be periodic, may comprise a plurality of unevenly-spaced target elements, which may or may not be segmented. The asymmetry may be with respect to target element segmentation or structural dimensions. Also, target design files and metrology measurements of the various metrology targets are disclosed.
Abstract:
The disclosure is directed to various apodization schemes for pupil imaging scatterometry. In some embodiments, the system includes an apodizer disposed within a pupil plane of the illumination path. In some embodiments, the system further includes an illumination scanner configured to scan a surface of the sample with at least a portion of apodized illumination. In some embodiments, the system includes an apodized pupil configured to provide a quadrupole illumination function. In some embodiments, the system further includes an apodized collection field stop. The various embodiments described herein may be combined to achieve certain advantages.
Abstract:
Various metrology systems and methods are provided. One metrology system includes a light source configured to produce a diffraction-limited light beam, an apodizer configured to shape the light beam in the entrance pupil of illumination optics, and optical elements configured to direct the diffraction-limited light beam from the apodizer to an illumination spot on a grating target on a wafer and to collect scattered light from the grating target. The metrology system further includes a field stop and a detector configured to detect the scattered light that passes through the field stop. In addition, the metrology system includes a computer system configured to determine a characteristic of the grating target using output of the detector.
Abstract:
The disclosure is directed to systems for providing illumination to a measurement head for optical metrology. In some embodiments of the disclosure, illumination beams from a plurality of illumination sources are combined to deliver illumination at one or more selected wavelengths to the measurement head. In some embodiments of the disclosure, intensity and/or spatial coherence of illumination delivered to the measurement head is controlled. In some embodiments of the disclosure, illumination at one or more selected wavelengths is delivered from a broadband illumination source configured for providing illumination at a continuous range of wavelengths.
Abstract:
Scatterometry overlay (SCOL) measurement methods, systems and targets are provided to enable efficient SCOL metrology with in-die targets. Methods comprise generating a signal matrix by: illuminating a SCOL target at multiple values of at least one illumination parameter, and at multiple spot locations on the target, wherein the illumination is at a NA (numerical aperture) >⅓ yielding a spot diameter
Abstract:
A method of monitoring overlay is used in a manufacturing process in which successive layers are deposited one over another to form a stack. Each layer may include a periodic structure such as a diffraction grating to be aligned with a periodic structure in another layer. The stacked periodic structures may be illuminated to form + and − first order diffraction patterns from the periodic structures. An image of the stacked periodic structures may be captured including + and − diffraction patterns. The + and − diffraction patterns may be compared to calculate the overlay between successive layers.
Abstract:
An illumination source may include two or more input light sources, a collector, and any combination of a beam uniformizer, a speckle reducer, or any number of output fibers to provide a selected illumination etendue. The collector may include one or more lenses to combine illumination from the two or more input light sources into an illumination beam, where the illumination from the two or more input light sources occupy different portions of an input aperture of the collector. The beam uniformizer may include a first noncircular-core fiber to receive the illumination beam, a second noncircular-core fiber, and one or more coupling lenses to relay a far-field distribution of the illumination beam from the first noncircular-core fiber to an input face of the second noncircular-core fiber to provide output light with uniform near-field and far-field distributions.