摘要:
A method of manufacturing a bottom electrode of a capacitor. A first dielectric layer is formed on a substrate. A cap layer is formed on the first dielectric layer. A second dielectric layer is formed on the cap layer. A node contact hole is formed to penetrate through the second dielectric layer, the cap layer and the first dielectric layer. A liner layer is formed on a sidewall of the node contact hole. A restraining layer is formed on the second dielectric layer. A patterned conductive layer is formed on a portion of the restraining layer and fills the node contact hole. A selective hemispherical grained layer is formed on the patterned conductive layer.
摘要:
The present invention relates to a method for forming excellent conformity due to improved surface sensitivity. A substrate is providing on which a transistor is formed. Moreover, a blanket first dielectric layer is deposited over the substrate. Then, a first photoresist layer is formed over the dielectric layer, wherein the first photoresist layer is defined and etched to form a contact opening. Further, a first conductive layer is formed to fill the contact opening, and performing an etching process to remove the first conductive layer to form a node contact. Consequentially, a second conductive layer is deposited over the first dielectric layer and the node contact. A second photoresist layer is formed over the second conductive layer, wherein the second photoresist layer is defined and etched to form a storage node as an upper electrode of a capacitor. Next, a hemispherical silicon grain (HSG) is formed over and on a sidewall of the second conductive layer. Treating the hemispherical silicon grain (HSG) layer by rapid thermal nitration (RTN). And then a conformal second dielectric layer is deposited over the hemispherical silicon grain (HSG) and the first dielectric layer after rapid thermal nitration (RTN). Finally, a blanket third conductive layer is formed over the substrate to serve as an upper electrode of the capacitor.
摘要:
A method of manufacturing a dielectric film for a capacitor in a DRAM. A native oxide layer is removed using a rapid ramp process at a pressure lower than 10−5 torr. A nitridation is performed to form a dielectric layer on the surface of a storage electrode. A silicon nitride layer is formed on the dielectric layer. The rapid ramp process is started at a temperature of about 450-550° C. The temperature is raised at a rate of about 80-120° C./minute. The rapid ramp process is stopped at about 700-850° C. The nitridation is performed using a source gas, such as ammonia at about 700-850° C. for a relatively long time of about 10-60 minutes. The dielectric layer includes silicon nitride or silicon-oxy-nitride. An oxide layer is further formed on the silicon nitride layer. The oxide layer is formed by, for example, a rapid thermal process. A gas used in the rapid thermal process can be selected from a group including nitrogen monoxide (N2O), oxygen and combinations of nitrogen monoxide (N2O) and oxygen. The dielectric film structure of the capacitor of the invention can be a double-layer structure such as silicon nitride/silicon oxide or a mono-layer structure, such as silicon nitride.
摘要:
A method for forming an isolating trench in a substrate is disclosed herein. The forgoing method includes the following steps. First, form a first dielectric layer and a second dielectric layer on the substrate subsequently, and then develop a photoresist pattern on the second dielectric layer. Then, etch the substrate, the first dielectric layer and the second dielectric layer to form a trench in the substrate. Next, form a first silicon dioxide layer in the trench followed by removing the photoresist pattern. The next step is to form a third dielectric layer on the second dielectric layer and the first silicon dioxide layer. Subsequently, fill the trench with silicon dioxide to from an oxide trench; then remove the second dielectric layer, a first portion of the third dielectric layer and a portion of the oxide trench with a chemical mechanical polishing (CMP) and a first solution. The third dielectric layer mentioned above includes the first portion of the third dielectric layer and a second portion of the third dielectric layer. Finally, etch the first dielectric layer and the oxide trench to expose the substrate. The second portion of the third dielectric layer is used to prevent an oxide loss in the oxide trench; then the isolating trench being formed thereof.
摘要:
The present disclosure provides a method of fabricating a semiconductor device. The method includes providing a semiconductor substrate having a first region and a second region, forming a high-k dielectric layer over the semiconductor substrate, forming a capping layer over the high-k dielectric layer in the first region, forming a first metal layer over capping layer in the first region and over the high-k dielectric in the second region, thereafter, forming a first gate stack in the first region and a second gate stack in the second region, protecting the first metal layer in the first gate stack while performing a treatment process on the first metal layer in the second gate stack, and forming a second metal layer over the first metal layer in the first gate stack and over the treated first metal layer in the second gate stack.
摘要:
Methods of fabricating semiconductor devices with high-k/metal gate features are disclosed. In some instances, methods of fabricating semiconductor devices with high-k/metal gate features are disclosed that prevent or reduce high-k/metal gate contamination of non-high-k/metal gate wafers and production tools. In some embodiments, the method comprises forming an interfacial layer over a semiconductor substrate on a front side of the substrate; forming a high-k dielectric layer and a capping layer over the interfacial layer; forming a metal layer over the high-k and capping layers; forming a polysilicon layer over the metal layer; and forming a dielectric layer over the semiconductor substrate on a back side of the substrate.
摘要:
The present disclosure provides a semiconductor device that includes a semiconductor substrate and a transistor formed in the substrate. The transistor includes a gate stack having a high-k dielectric and metal gate, a sealing layer formed on sidewalls of the gate stack, the sealing layer having an inner edge and an outer edge, the inner edge interfacing with the sidewall of the gate stack, a spacer formed on the outer edge of the sealing layer, and a source/drain region formed on each side of the gate stack, the source/drain region including a lightly doped source/drain (LDD) region that is aligned with the outer edge of the sealing layer.
摘要:
A semiconductor structure includes a refractory metal silicide layer; a silicon-rich refractory metal silicide layer on the refractory metal silicide layer; and a metal-rich refractory metal silicide layer on the silicon-rich refractory metal silicide layer. The refractory metal silicide layer, the silicon-rich refractory metal silicide layer and the metal-rich refractory metal silicide layer include same refractory metals. The semiconductor structure forms a portion of a gate electrode of a metal-oxide-semiconductor device.
摘要:
The present disclosure provides a method of fabricating a semiconductor device. The method includes providing a semiconductor substrate having a first region and a second region, forming a high-k dielectric layer over the semiconductor substrate, forming a capping layer over the high-k dielectric layer in the first region, forming a first metal layer over capping layer in the first region and over the high-k dielectric in the second region, thereafter, forming a first gate stack in the first region and a second gate stack in the second region, protecting the first metal layer in the first gate stack while performing a treatment process on the first metal layer in the second gate stack, and forming a second metal layer over the first metal layer in the first gate stack and over the treated first metal layer in the second gate stack.
摘要:
A method is provided that allows for maintaining a desired equivalent oxide thickness (EOT) by reducing the thickness of an interfacial layer in a gate structure. An interfacial layer is formed on a substrate, a gate dielectric layer such as, a high-k gate dielectric, is formed on the interfacial layer. A gettering layer is formed on the substrate overlying the interfacial layer. The gettering layer may function to getter oxygen from the interfacial layer such that the interfacial layer thickness is decreased and/or restricted from growth.