MOSFET with distributed doped P-shield zones under trenches

    公开(公告)号:US12057482B2

    公开(公告)日:2024-08-06

    申请号:US17395239

    申请日:2021-08-05

    Abstract: A vertical trench MOSFET is formed with deep P-shield regions below portions of each gate trench. The deep P-shield regions are effectively downward extensions of the P-body/well, and are electrically coupled to the top source electrode. The P-shield regions abut the bottom portions and lower sides of the gate trenches, so that those small portions of the gate trench do not create N-channels and do not conduct current. Accordingly, each trench comprises an active gate portion that creates an N-channel and a small non-active portion that abuts the P-shield regions. The spacing of the P-shield regions along each gate trench is selected to achieve the desired electric field spreading to protect the gate oxide from punch-through. No field plate trenches are needed to be formed in the active area of the MOSFET. The deep P-shield regions are formed by implanting P-type dopants through the bottom of the trenches.

    Lateral Semiconductor Power Devices
    53.
    发明申请

    公开(公告)号:US20200279926A1

    公开(公告)日:2020-09-03

    申请号:US16704384

    申请日:2019-12-05

    Abstract: Methods and systems for lateral power devices, and methods for operating them, in which charge balancing is implemented in a new way. In a first inventive teaching, the lateral conduction path is laterally flanked by regions of opposite conductivity type which are self-aligned to isolation trenches which define the surface geometry of the channel. In a second inventive teaching, which can be used separately or in synergistic combination with the first teaching, the drain regions are self-isolated. In a third inventive teaching, which can be used in synergistic combination with the first and/or second teachings, the source regions are also isolated from each other. In a fourth inventive teaching, the lateral conduction path is also overlain by an additional region of opposite conductivity type.

    SPLIT GATE POWER DEVICE AND ITS METHOD OF FABRICATION

    公开(公告)号:US20200273987A1

    公开(公告)日:2020-08-27

    申请号:US16782996

    申请日:2020-02-05

    Abstract: A split gate power device is disclosed having a trench containing a U-shaped gate that, when biased above a threshold voltage, creates a conductive channel in a p-well. Below the gate is a field plate in the trench, coupled to the source electrode, for spreading the electric field along the trench to improve the breakdown voltage. The top gate poly is initially formed relatively thin so that it can be patterned using non-CMP techniques, such as dry etching or wet etching. As such, the power device can be fabricated in conventional fabs not having CMP capability. In one embodiment, the thin gate has vertical and lateral portions that create conductive vertical and lateral channels in a p-well. In another embodiment, the thin gate has only vertical portions along the trench sidewalls for minimizing surface area and gate capacitance.

    Lateral semiconductor power devices

    公开(公告)号:US10529810B1

    公开(公告)日:2020-01-07

    申请号:US15374875

    申请日:2016-12-09

    Abstract: Methods and systems for lateral power devices, and methods for operating them, in which charge balancing is implemented in a new way. In a first inventive teaching, the lateral conduction path is laterally flanked by regions of opposite conductivity type which are self-aligned to isolation trenches which define the surface geometry of the channel. In a second inventive teaching, which can be used separately or in synergistic combination with the first teaching, the drain regions are self-isolated. In a third inventive teaching, which can be used in synergistic combination with the first and/or second teachings, the source regions are also isolated from each other. In a fourth inventive teaching, the lateral conduction path is also overlain by an additional region of opposite conductivity type.

    Lateral Semiconductor Power Devices
    56.
    发明申请

    公开(公告)号:US20200006499A1

    公开(公告)日:2020-01-02

    申请号:US15374875

    申请日:2016-12-09

    Abstract: Methods and systems for lateral power devices, and methods for operating them, in which charge balancing is implemented in a new way. In a first inventive teaching, the lateral conduction path is laterally flanked by regions of opposite conductivity type which are self-aligned to isolation trenches which define the surface geometry of the channel. In a second inventive teaching, which can be used separately or in synergistic combination with the first teaching, the drain regions are self-isolated. In a third inventive teaching, which can be used in synergistic combination with the first and/or second teachings, the source regions are also isolated from each other. In a fourth inventive teaching, the lateral conduction path is also overlain by an additional region of opposite conductivity type.

Patent Agency Ranking