Abstract:
Some embodiments include a memory array having a vertical stack of alternating insulative levels and control gate levels. Channel material extends vertically along the stack. The control gate levels comprising conductive regions. The conductive regions include at least three different materials. Charge-storage regions are adjacent the control gate levels. Charge-blocking regions are between the charge-storage regions and the conductive regions.
Abstract:
Some embodiments include an integrated assembly having a conductive expanse over conductive nodes. The conductive nodes include a first composition. A bottom surface of the conductive expanse includes a second composition which is different composition than the first composition. A stack is over the conductive expanse. The stack includes alternating first and second levels. Pillar structures extend vertically through the stack. Each of the pillar structures includes a post of conductive material laterally surrounded by an insulative liner. At least one of the posts extends through the conductive expanse to directly contact one of the conductive nodes. Some embodiments include methods of forming integrated assemblies.
Abstract:
A memory array comprises a vertical stack comprising alternating insulative tiers and wordline tiers. The wordline tiers comprise gate regions of individual memory cells. The gate regions individually comprise part of a wordline in individual of the wordline tiers. Channel material extends elevationally through the insulative tiers and the wordline tiers. The individual memory cells comprise a memory structure laterally between the gate region and the channel material. Individual of the wordlines comprise laterally-outer longitudinal-edge portions and a respective laterally-inner portion laterally adjacent individual of the laterally-outer longitudinal-edge portions. The individual laterally-outer longitudinal-edge portions project upwardly and downwardly relative to its laterally-adjacent laterally-inner portion. Methods are disclosed.
Abstract:
A method of forming metal silicide-comprising material includes forming a substrate which includes a first stack having second metal over first metal over silicon and a second stack having second metal over silicon. The first and second metals are of different compositions. The substrate is subjected to conditions which react the second metal with the silicon in the second stack to form metal silicide-comprising material from the second stack. The first metal between the second metal and the silicon in the first stack precludes formation of a silicide comprising the second metal and silicon from the first stack. After forming the metal silicide-comprising material, the first metal, the second metal and the metal silicide-comprising material are subjected to an etching chemistry that etches at least some remaining of the first and second metals from the substrate selectively relative to the metal silicide-comprising material.
Abstract:
Electronic devices (e.g., semiconductor devices, which may be configured for 3D NAND memory devices), comprise pillars extending through a stack of alternating conductive tiers and insulative tiers. The conductive tiers, which may include control gates for access lines (e.g., word lines), include conductive rails along an outer sidewall of the conductive tiers, distal from the pillars extending through the conductive tiers. The conductive rails protrude laterally beyond outer sidewalls of the insulative tiers. The conductive rails increase the amount of conductive material that may otherwise be in the conductive tiers, which may enable the conductive material to exhibit a lower electrical resistance, improving operational performance of the electronic devices.
Abstract:
Some embodiments include an integrated assembly having a source structure, and having a stack of alternating conductive levels and insulative levels over the source structure. Cell-material-pillars pass through the stack. The cell-material-pillars are arranged within a configuration which includes a first memory-block-region and a second memory-block-region. The cell-material-pillars include channel material which is electrically coupled with the source structure. Memory cells are along the conductive levels and include regions of the cell-material-pillars. A panel is between the first and second memory-block-regions. The panel has a first material configured as a container shape. The container shape defines opposing sides and a bottom of a cavity. The panel has a second material within the cavity. The second material is compositionally different from the first material. Some embodiments include methods of forming integrated assemblies.
Abstract:
Described are methods for forming a tungsten conductive structure over a substrate, such as a semiconductor substrate. Described examples include forming a silicon-containing material, such as a doped silicon-containing material, over a supporting structure. The silicon-containing material is then subsequently converted to a tungsten seed material containing the dopant material. A tungsten fill material of lower resistance will then be formed over the tungsten seed material.
Abstract:
Some embodiments include a memory array having a vertical stack of alternating insulative levels and control gate levels. Channel material extends vertically along the stack. The control gate levels comprising conductive regions. The conductive regions include at least three different materials. Charge-storage regions are adjacent the control gate levels. Charge-blocking regions are between the charge-storage regions and the conductive regions.
Abstract:
Memory circuitry comprising strings of memory cells comprises a vertical stack comprising alternating insulative tiers and conductive tiers. Channel-material strings extend through the insulative tiers and the conductive tiers. Charge-passage material is in the conductive tiers laterally-outward of the channel-material strings. Storage material is in the conductive tiers laterally-outward of the charge-passage material. At least one of AlOq, ZrOq, and HfOq is in the conductive tiers laterally-outward of the storage material. At least one of (a) and (b) is in the conductive tiers laterally-outward of the at least one of AlOq, ZrOq, and HfOq, where, (a): MoOxNy, where each of “x” and “y” is from 0 to 4.0; and (b): MoMz, where “M” is at least one of W, a Group 7 metal, and a Group 8 metal; “z” being greater than 0 and less than 1.0. Metal material is in the conductive tiers laterally-outward of the at least one of the (a) and the (b). Memory cells are in individual of the conductive tiers. The memory cells individually comprise the channel material of individual of the channel-material strings, the storage material, the at least one of AlOq, ZrOq, and HfOq, the at least one of the (a) and the (b), and the metal material. Other embodiments are disclosed.
Abstract:
Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes a first dielectric material; a second dielectric material separated from the first dielectric material; a memory cell string including a pillar extending through the first and second dielectric materials, the pillar including a portion between the first and second dielectric materials; an additional dielectric material contacting the portion of the pillar; a conductive material contacting the additional dielectric material; and a tungsten structure including a portion of tungsten contacting the conductive material, wherein a majority of the portion of tungsten is beta-phase tungsten.