Abstract:
A method for accelerating code optimization a microprocessor. The method includes fetching an incoming microinstruction sequence using an instruction fetch component and transferring the fetched macroinstructions to a decoding component for decoding into microinstructions. Optimization processing is performed by reordering the microinstruction sequence into an optimized microinstruction sequence comprising a plurality of dependent code groups. The plurality of dependent code groups are then output to a plurality of engines of the microprocessor for execution in parallel. A copy of the optimized microinstruction sequence is stored into a sequence cache for subsequent use upon a subsequent hit optimized microinstruction sequence.
Abstract:
A system for executing instructions using a plurality of register file segments for a processor. The system includes a global front end scheduler for receiving an incoming instruction sequence, wherein the global front end scheduler partitions the incoming instruction sequence into a plurality of code blocks of instructions and generates a plurality of inheritance vectors describing interdependencies between instructions of the code blocks. The system further includes a plurality of virtual cores of the processor coupled to receive code blocks allocated by the global front end scheduler, wherein each virtual core comprises a respective subset of resources of a plurality of partitionable engines, wherein the code blocks are executed by using the partitionable engines in accordance with a virtual core mode and in accordance with the respective inheritance vectors. A plurality register file segments are coupled to the partitionable engines for providing data storage.
Abstract:
A method for translating instructions for a processor. The method includes accessing a plurality of guest instructions that comprise multiple guest branch instructions, and assembling the plurality of guest instructions into a guest instruction block. The guest instruction block is converted into a corresponding native conversion block. The native conversion block is stored into a native cache. A mapping of the guest instruction block to corresponding native conversion block is stored in a conversion look aside buffer. Upon a subsequent request for a guest instruction, the conversion look aside buffer is indexed to determine whether a hit occurred, wherein the mapping indicates whether the guest instruction has a corresponding converted native instruction in the native cache. The converted native instruction is forwarded for execution in response to the hit.
Abstract:
Systems and methods for supporting a plurality of load and store accesses of a cache are disclosed. Responsive to a request of a plurality of requests to access a block of a plurality of blocks of a load cache, the block of the load cache and a logically and physically paired block of a store coalescing cache are accessed in parallel. The data that is accessed from the block of the load cache is overwritten by the data that is accessed from the block of the store coalescing cache by merging on a per byte basis. Access is provided to the merged data.
Abstract:
Cache replacement policy. In accordance with a first embodiment of the present invention, an apparatus comprises a queue memory structure configured to queue cache requests that miss a second cache after missing a first cache. The apparatus comprises additional memory associated with the queue memory structure is configured to record an evict way of the cache requests for the cache. The apparatus may be further configured to lock the evict way recorded in the additional memory, for example, to prevent reuse of the evict way. The apparatus may be further configured to unlock the evict way responsive to a fill from the second cache to the cache. The additional memory may be a component of a higher level cache.
Abstract:
Systems and methods for accessing a unified translation lookaside buffer (TLB) are disclosed. A method includes receiving an indicator of a level one translation lookaside buffer (L1TLB) miss corresponding to a request for a virtual address to physical address translation, searching a cache that includes virtual addresses and page sizes that correspond to translation table entries (TTEs) that have been evicted from the L1TLB, where a page size is identified, and searching a second level TLB and identifying a physical address that is contained in the second level TLB. Access is provided to the identified physical address.
Abstract:
Systems and methods for load canceling in a processor that is connected to an external interconnect fabric are disclosed. As a part of a method for load canceling in a processor that is connected to an external bus, and responsive to a flush request and a corresponding cancellation of pending speculative loads from a load queue, a type of one or more of the pending speculative loads that are positioned in the instruction pipeline external to the processor, is converted from load to prefetch. Data corresponding to one or more of the pending speculative loads that are positioned in the instruction pipeline external to the processor is accessed and returned to cache as prefetch data. The prefetch data is retired in a cache location of the processor.
Abstract:
A method for maintaining the coherency of a store coalescing cache and a load cache is disclosed. As a part of the method, responsive to a write-back of an entry from a level one store coalescing cache to a level two cache, the entry is written into the level two cache and into the level one load cache. The writing of the entry into the level two cache and into the level one load cache is executed at the speed of access of the level two cache.
Abstract:
Systems and methods for supporting a plurality of load and store accesses of a cache are disclosed. Responsive to a request of a plurality of requests to access a block of a plurality of blocks of a load cache, the block of the load cache and a logically and physically paired block of a store coalescing cache are accessed in parallel. The data that is accessed from the block of the load cache is overwritten by the data that is accessed from the block of the store coalescing cache by merging on a per byte basis. Access is provided to the merged data.
Abstract:
Systems and methods for flushing a cache with modified data are disclosed. Responsive to a request to flush data from a cache with modified data to a next level cache that does not include the cache with modified data, the cache with modified data is accessed using an index and a way and an address associated with the index and the way is secured. Using the address, the cache with modified data is accessed a second time and an entry that is associated with the address is retrieved from the cache with modified data. The entry is placed into a location of the next level cache.