Abstract:
A pixel-by-pixel, digitally-addressable, pixelated, precursor, fluid-assay, active-matrix micro-structure including plural pixels formed preferably on a glass or plastic substrate, wherein each pixel, formed utilizing low-temperature TFT and Si technology, includes (a) at least one non-functionalized, digitally-addressable assay sensor, and (b), disposed operatively adjacent this sensor, digitally-addressable and energizable electromagnetic field-creating structure which is selectively energizable to create, in the vicinity of the at least one assay sensor, an ambient electromagnetic field environment which is structured to assist in functionalizing, as a possession on said at least one assay sensor, at least one digitally-addressable assay site which will display an affinity for a selected fluid-assay material.
Abstract:
A method for producing an active-matrix, fluid-assay micro-structure including, utilizing low-temperature TFT and Si technology, establishing preferably on a glass or plastic substrate a matrix array of digitally-addressable, assay-material-specific-functionalizable pixels, and employing pixel-specific digital addressing for selected, array-established pixels, individually functionalizing these pixels.
Abstract:
A method for forming a high-luminescence Si electroluminescence (EL) phosphor is provided, with an EL device made from the Si phosphor. The method comprises: depositing a silicon-rich oxide (SRO) film, with Si nanocrystals, having a refractive index in the range of 1.5 to 2.1, and a porosity in the range of 5 to 20%; and, post-annealing the SRO film in an oxygen atmosphere. DC-sputtering or PECVD processes can be used to deposit the SRO film. In one aspect the method further comprises: HF buffered oxide etching (BOE) the SRO film; and, re-oxidizing the SRO film, to form a SiO2 layer around the Si nanocrystals in the SRO film. In one aspect, the SRO film is re-oxidized by annealing in an oxygen atmosphere. In this manner, a layer of SiO2 is formed around the Si nanocrystals having a thickness in the range of 1 to 5 nanometers (nm).
Abstract:
A method is provided for forming a Si and Si—Ge thin films. The method comprises: providing a low temperature substrate material of plastic or glass; supplying an atmosphere; performing a high-density (HD) plasma process, such as an HD PECVD process using an inductively coupled plasma (ICP) source; maintaining a substrate temperature of 400 degrees C., or less; and, forming a semiconductor layer overlying the substrate that is made from Si or Si-germanium. The HD PECVD process is capable of depositing Si at a rate of greater than 100 Å per minute. The substrate temperature can be as low as 50 degrees C. Microcrystalline Si, a-Si, or a polycrystalline Si layer can be formed over the substrate. Further, the deposited Si can be either intrinsic or doped. Typically, the supplied atmosphere includes Si and H. For example, an atmosphere can be supplied including SiH4 and H2, or comprising H2 and Silane with H2/Silane ratio in the range of 0–100.
Abstract:
A method for fabricating a thin film oxide is provided. The method includes: forming a substrate; treating the substrate at temperatures equal to and less than 360° C. using a high density (HD) plasma source; and forming an M oxide layer overlying the substrate where M is an element selected from a group including elements chemically defined as a solid and having an oxidation state in a range of +2 to +5. In some aspects, the method uses an inductively coupled plasma (ICP) source. In some aspects the ICP source is used to plasma oxidize the substrate. In other aspects, HD plasma enhanced chemical vapor deposition is used to deposit the M oxide layer on the substrate. In some aspects of the method, M is silicon and a silicon layer and an oxide layer are incorporated into a TFT.