摘要:
A semiconductor device is provided with an insulating film which is formed on a semiconductor substrate and has a first recess, a capacitor lower electrode which is formed on the walls and the bottom of the first recess and has a second recess, and a capacitor insulating film which is formed on the walls and the bottom of the second recess and has a third recess, and a capacitor upper electrode embedded in the third recess.
摘要:
A capacitor upper electrode and a wiring are electrically connected to each other by using a plug and a conductive layer formed below a capacitive element without using a plug that directly connects the capacitor upper electrode to the wiring provided thereon via an interlayer insulating film therebetween. Alternatively, the capacitor upper electrode is covered by a conductive hydrogen barrier film, and the capacitor upper electrode and the wiring are electrically connected to each other via both a plug connecting the wiring and the conductive hydrogen barrier film to each other and the conductive hydrogen barrier film.
摘要:
An impurity diffusion layer serving as the source or the drain of a transistor is formed in a semiconductor substrate, and a protection insulating film is formed so as to cover the transistor. A capacitor lower electrode, a capacitor dielectric film of an oxide dielectric film and a capacitor upper electrode are successively formed on the protection insulating film. A plug for electrically connecting the impurity diffusion layer of the transistor to the capacitor lower electrode is buried in the protection insulating film. An oxygen barrier layer is formed between the plug and the capacitor lower electrode. The oxygen barrier layer is made from a composite nitride that is a mixture or an alloy of a first nitride having a conducting property and a second nitride having an insulating property.
摘要:
A semiconductor memory device of the present invention includes: a semiconductor substrate; a memory cell capacitor for storing data, including a first electrode provided above the semiconductor substrate, a capacitance insulating film formed on the first electrode, and a second electrode provided on the capacitance insulating film; a step reducing film covering an upper surface and a side surface of the memory cell capacitor; and an overlying hydrogen barrier film covering the step reducing film.
摘要:
A variable resistance nonvolatile storage element includes: a first electrode; a second electrode; and a variable resistance layer having a resistance value that reversibly changes based on an electrical signal applied between the electrodes, wherein the variable resistance layer has a structure formed by stacking a first transition metal oxide layer, a second transition metal oxide layer, and a third transition metal oxide layer in this order, the first transition metal oxide layer having a composition expressed as MOx (where M is a transition metal and O is oxygen), the second transition metal oxide layer having a composition expressed as MOy (where x>y), and the third transition metal oxide layer having a composition expressed as MOz (where y>z).
摘要翻译:可变电阻非易失性存储元件包括:第一电极; 第二电极; 以及可变电阻层,其具有基于施加在所述电极之间的电信号而可逆地变化的电阻值,其中所述可变电阻层具有通过堆叠第一过渡金属氧化物层,第二过渡金属氧化物层和第三过渡金属氧化物层而形成的结构 过渡金属氧化物层,第一过渡金属氧化物层具有以MOx表示的组成(其中M是过渡金属,O是氧),第二过渡金属氧化物层具有以MOy表示的组成(其中x> y )和具有表示为MOz(其中y> z)的组成的第三过渡金属氧化物层。
摘要:
Provided is a method for manufacturing a variable resistance nonvolatile semiconductor memory element, and a nonvolatile semiconductor memory element which make it possible to operate at a low voltage and high speed when initial breakdown is caused, and exhibit favorable diode element characteristics. The method for manufacturing the nonvolatile semiconductor memory element includes, after forming a top electrode of a variable resistance element and at least before forming a top electrode of an MSM diode element, oxidizing to insulate a portion of a variable resistance film in a region around an end face of a variable resistance layer.
摘要:
Provided is a method for manufacturing a variable resistance nonvolatile storage device, which prevents electrical conduction between lower electrodes and upper electrodes of variable resistance elements in the memory cell holes. The method includes: forming lower copper lines; forming a third interlayer insulating layer; forming memory cell holes in the third interlayer insulating layer, an opening diameter of upper portions of the memory cell holes being smaller than bottom portions; forming a metal electrode layer on the bottom of each memory cell holes by sputtering; embedding and forming a variable resistance layer in each memory cell hole; and forming upper copper lines connected to the variable resistance layer embedded and formed in each memory cell hole.
摘要:
A nonvolatile memory element includes a variable resistance layer located between a lower electrode and an upper electrode and having a resistance value that reversibly changes based on electrical signals applied between these electrodes. The variable resistance layer includes at least two layers: a first variable resistance layer including a first transition metal oxide; and a second variable resistance layer including a second transition metal oxide and a transition metal compound. The second transition metal oxide has an oxygen content atomic percentage lower than an oxygen content atomic percentage of the first transition metal oxide, the transition metal compound contains either oxygen and nitrogen or oxygen and fluorine, and the second transition metal oxide and the transition metal compound are in contact with the first variable resistance layer.
摘要:
A non-volatile memory device includes: a memory cell array including a plurality of memory cells each including a first variable resistance element and a first current steering element and a parameter generation circuit including a reference cell including a second variable resistance element and a second current steering element having the same current density-voltage characteristic as that of the first current steering element, wherein a conductive shorting layer for causing short-circuiting between the electrodes is formed on the side surfaces of the second variable resistance element.
摘要:
A nonvolatile memory element according to the present disclosure includes: a variable resistance element including a first electrode layer, a second electrode layer, and a variable resistance layer which is located between the first electrode layer and the second electrode layer and has a resistance value that reversibly changes based on an electrical signal applied between the first electrode layer and the second electrode layer; and a fixed resistance layer having a predetermined resistance value and stacked together with the variable resistance element. The variable resistance layer includes (i) a first transition metal oxide layer which is oxygen deficient and (ii) a second transition metal oxide layer which has a higher oxygen content atomic percentage than the first transition metal oxide layer. The predetermined resistance value ranges from 70Ω to 1000Ω inclusive.