Abstract:
The present invention relates to a fabrication process relating to a fabrication process for manufacture of micro-electromechanical (MEM) devices such as cantilever supported beams. This fabrication process requires only two lithographic masking steps and offers moveable electromechanical devices with high electrical isolation. A preferred embodiment of the process uses electrically insulating glass substrate as the carrier substrate and single crystal silicon as the MEM component material. The process further includes deposition of an optional layer of insulating material such as silicon dioxide on top of a layer of doped silicon grown on a silicon substrate. The silicon dioxide is epoxy bonded to the glass substrate to create a silicon-silicon dioxide-epoxy-glass structure. The silicon is patterned using anisotropic plasma dry etching techniques. A second patterning then follows to pattern the silicon dioxide layer and an oxygen plasma etch is performed to undercut the epoxy film and to release the silicon MEM component. This two-mask process provides single crystal silicon MEMs with electrically isolated MEM component. Retaining silicon dioxide insulating material in selected areas mechanically supports the MEM component.
Abstract:
The current invention provides for encapsulated release structures, intermediates thereof and methods for their fabrication. The multi-layer structure has a capping layer, that preferably comprises silicon oxide and/or silicon nitride, and which is formed over an etch resistant substrate. A patterned device layer, preferably comprising silicon nitride, is embedded in a sacrificial material, preferably comprising polysilicon, and is disposed between the etch resistant substrate and the capping layer. Access trenches or holes are formed in to capping layer and the sacrificial material are selectively etched through the access trenches, such that portions of the device layer are release from sacrificial material. The etchant preferably comprises a noble gas fluoride NGF2x (wherein NgnullXe, Kr or Ar: and where xnull1, 2 or 3). After etching that sacrificial material, the access trenches are sealed to encapsulate released portions the device layer between the etch resistant substrate and the capping layer. The current invention is particularly useful for fabricating MEMS devices, multiple cavity devices and devices with multiple release features.
Abstract:
The invention is a silicon pressure micro-sensing device and the fabrication process thereof. The silicon pressure micro-sensing device includes a pressure chamber, and is constituted of a P-type substrate with a taper chamber and an N-type epitaxial layer thereon. On the N-type epitaxial layer are a plurality of piezo-resistance sensing units which sense deformation caused by pressure. The fabrication pressure of the silicon pressure micro-sensing device includes a step of first making a plurality of holes on the N-type epitaxial layer to reach the P-type substrate beneath. Then, by an anisotropic etching stop technique, in which etchant pass through the holes, a taper chamber is formed in the P-type substrate. Finally, an insulating material is applied to seal the holes, thus attaining the silicon pressure micro-sensing device that is able to sense pressure differences between two ends thereof.
Abstract:
A microelectromechanical (MEMS) device and a method of fabricating a MEMS device are provided. The method of fabricating the MEMS device includes the steps of: etching a die release trench in a primary handle layer of a wafer having the handle layer, an etch-stop layer disposed on the primary handle layer, and a device layer disposed on the etch-stop layer; patterning a release trench in the device layer that is aligned with the release trench in the primary handle layer; temporarily attaching an additional handle layer to the primary handle layer; etching the device layer to define a structure in the device layer; removing the etch-stop layer; and removing the additional handle layer to release the die.
Abstract:
The present invention provides a micromechanical or microoptomechanical structure. The structure is produced by a process comprising defining a structure on a single crystal silicon layer separated by an insulator layer from a substrate layer; depositing and etching a polysilicon layer on the single crystal silicon layer, with remaining polysilicon forming mechanical or optical elements of the structure; exposing a selected area of the single crystal silicon layer; and releasing the formed structure.
Abstract:
A method for fabricating a micromachined structure. The method includes forming a circuitry layer having an upper etch-resistant layer on an upper surface of a substrate, directionally etching a portion of the circuitry layer exposed by the upper etch-resistant layer, and directionally etching a portion the substrate exposed by the upper etch-resistant layer with a deep reactive ion etch.
Abstract:
A new bulk resonator may be fabricated by a process that is readily incorporated in the traditional fabrication techniques used in the fabrication of monolithic integrated circuits on a wafer. The resonator is decoupled from the wafer by a cavity etched under the resonator using selective etching through front openings (vias) in a resonator membrane. In a typical structure the resonator is formed over a silicon wafer by first forming a first electrode, coating a piezoelectric layer over both the electrode and the wafer surface and forming a second electrode opposite the first on the surface of the piezoelectric layer. After this structure is complete, a number of vias are etched in the piezoelectric layer exposing the surface under the piezoelectric layer to a selective etching process that selectively attacks the surface below the piezoelectric layer creating a cavity under the resonator.
Abstract:
A pendulous accelerometer wherein the active reaction mass is pendulously mounted external to a fixed support structure and may include sensor cover or covers in the total active reaction mass.
Abstract:
A sensor having high sensitivity is formed using a suspended structure with a high-density tungsten core. To manufacture it, a sacrificial layer of silicon oxide, a polycrystal silicon layer, a tungsten layer and a silicon carbide layer are deposited in succession over a single crystal silicon body. The suspended structure is defined by selectively removing the silicon carbide, tungsten and polycrystal silicon layers. Then spacers of silicon carbide are formed which cover the uncovered ends of the tungsten layer, and the sacrificial layer is then removed.
Abstract:
A micromachining method is disclosed for forming a suspended micromechanical structure from {111} crystalline silicon. The micromachining method is based on the use of anisotropic dry etching to define lateral features of the structure which are etched down into a {111}-silicon substrate to a first etch depth, thereby forming sidewalls of the structure. The sidewalls are then coated with a protection layer, and the substrate is dry etched to a second etch depth to define a spacing of the structure from the substrate. A selective anisotropic wet etchant (e.g. KOH, EDP, TMAH, NaOH or CsOH) is used to laterally undercut the structure between the first and second etch depths, thereby forming a substantially planar lower surface of the structure along a {111} crystal plane that is parallel to an upper surface of the structure. The lateral extent of undercutting by the wet etchant is controlled and effectively terminated by either timing the etching, by the location of angled {111}-silicon planes or by the locations of preformed etch-stops. This present method allows the formation of suspended micromechanical structures having large vertical dimensions and large masses while allowing for detailed lateral features which can be provided by dry etch definition. Additionally, the method of the present invention is compatible with the formation of electronic circuitry on the substrate.