摘要:
A cutting insert has only cutting edge portion thereof made of SiC whisker reinforced ceramics brazed to the shank with active solder. This provides improved cutting performance by increased toughness and high strength of the SiC whisker reinforced ceramics without limitation in shape while reducing manufacturing costs. The cutting insert includes a cutting edge portion made of SiC whisker reinforced ceramics, and a shank to which the cutting edge portion is mounted. The cutting edge portion is brazed to the shank using an active solder, and the whiskers are disorderedly arranged and agglomerated in the cutting edge portion.
摘要:
A brazing alloy is provided in the form of a wire, rod or preform, and is made of, in weight percent: 3-7.5% P, 0.1-1.9% Zn, 0-74.7% Ag, 0-80% Au, 0-10% Sn, 0-5% Ni, 0-3% each of Si, Mn, Li, and Ge, and the balance copper in an amount of at least 21.7%. In additional embodiments, Zn may be present in an amount of 0.6-1.9%. A method of torch brazing is also provided. The method includes forming the alloy into a wire or rod, placing the tip of the wire or rod in contact with a surface of a joint, heating the joint surface using a torch flame, and contacting the tip of the wire or rod to the heated joint surface to melt and flow the alloy onto the joint surface and into the joint under capillary action.
摘要:
A preparing method of a glass substrate film sputtering target is disclosed, which comprises the following steps of: weighing an alloy material for forming the glass substrate film sputtering target; adding the alloy material weighed into a plasma pressure compaction sintering cavity and sintering the alloy material to obtain a sintered target, wherein the sintering temperature is 500° C.˜1600° C. and the sintering time is 5˜20 minutes; and post-processing the sintered target. A glass substrate film sputtering target prepared by the preparing method is further disclosed. Because the plasma pressure compaction for quick sintering is adopted for the glass substrate film sputtering target and the preparing method thereof of the present disclosure, quality of the target can be improved and the time necessary for preparing the target can be shortened.
摘要:
The present invention provides a Cu—In—Ga—Se powder containing Cu, In, Ga and Se in which cracks do not occur during sintering or processing, and a sintered body and sputtering target, each using the same. The present invention relates to a powder containing Cu, In Ga and Se, which contains a Cu—In—Ga—Se compound and/or a Cu—In—Se compound in an amount of 60 mass % or more in total. The powder of the present invention preferably contains an In—Se compound in an amount of 20 mass % or less and/or a Cu—In compound in an amount of 20 mass % or less.
摘要:
Implementations of the present invention include a binder with high hardness and tensile strength that allows for the creation of drilling tools with increased wear resistance. In particular, one or more implementations include a binder having about 5 to about 50 weight % of nickel, about 35 to about 60 weight % of zinc, and about 0.5 to about 35 weight % of tin. Implementations of the present invention also include drilling tools, such as reamers and drill bits, formed from such binders.
摘要:
An alloy having a formula Zr100-x-u (Cu100-aNia)xAlu wherein X, U and a are in atomic percentages wherein X is less than or equal to 48 and greater than or equal to 37, wherein U is less than or equal to 14 and greater than or equal to 3, and wherein a is less than or equal to ten and greater than or equal to 3. Methods of forming the alloy and bulk metallic glass comprising the alloy are also provided. The alloy and bulk metallic glass are useful in a wide number of applications which includes sports and luxury products, electronic goods, medical instruments, and military equipment.
摘要:
A fish cultivation net 3 has a rhombically netted form made by arranging a large number of waved wires 6 in parallel such that the adjacent wires are entwined with each other at their curved portions 6a. The wires 6 has a composition containing 62 to 91 mass % of Cu, 0.01 to 4 mass % of Sn, and the balance being Zn. The Cu content [Cu] and the Sn content [Sn] in terms of mass % satisfy the relationship 62≦[Cu]−0.5[Sn]≦90. The copper alloy material has a phase structure including an α phase, a γ phase, and a δ phase and the total area ratio of these phases is 95 to 100%.
摘要:
A conductive paste may include a conductive powder, a metallic glass including a first element having a heat of mixing value with the conductive powder of less than 0, and an organic vehicle, and an electronic device and a solar cell may include an electrode formed using the conductive paste.
摘要:
Provided is a bimetallic tube for transport of hydrocarbon feedstocks in refinery process furnaces, and more particularly in furnace radiant coils, including: i) an outer tube layer being formed from carbon steels or low chromium steels comprising less than 15.0 wt. % Cr based on the total weight of the steel; ii) an inner tube layer being formed from an alumina forming bulk alloy including 5.0 to 10.0 wt. % of Al, 20.0 wt. % to 25.0 wt. % Cr, less than 0.4 wt. % Si, and at least 35.0 wt. % Fe with the balance being Ni, wherein the inner tube layer is formed plasma powder welding the alumina forming bulk alloy on the inner surface of the outer tube layer; and iii) an oxide layer formed on the surface of the inner tube layer, wherein the oxide layer is substantially comprised of alumina, chromia, silica, mullite, spinels, or mixtures thereof.
摘要:
To provide a silver-white copper alloy which represents a silver-white color equivalent to that of nickel silver and is excellent in hot workability and the like. The silver-white copper alloy includes 47.5 to 50.5 mass % of Cu, 7.8 to 9.8 mass % of Ni, 4.7 to 6.3 mass % of Mn, and the remainder including Zn, and the silver-white copper alloy has an alloy composition satisfying relationships of f1=[Cu]+1.4×[Ni]+0.3×[Mn]=62.0 to 64.0, f2=[Mn]/[Ni]=0.49 to 0.68, and f3=[Ni]+[Mn]=13.0 to 15.5 among a content [Cu] mass % of Cu, a content [Ni] mass % of Ni, and a content [Mn] mass % of Mn, and has a metal structure in which β phases at an area ratio of 2 to 17% are dispersed in an α-phase matrix. The copper alloy is provided as a hot processing material or continuous casting material formed by performing one or more heat treatments and cold processes on a hot processing raw material formed by performing a hot process on an ingot or a casting raw material obtained by continuous casting.