Abstract:
An apparatus for producing an assembly of filamentary elements that are wound together in a helix includes a twisting device, a preforming device, and an assembling device. The twisting device is structured to twist at least first and second filamentary elements individually, such that each filamentary element is twisted separately from another filamentary element, to produce at least first and second twisted filamentary elements. The preforming device, which is arranged downstream of the twisting device, is structured to preform each of the twisted filamentary elements individually into separate preformed helixes, to produce at least first and second preformed helixes. The assembling device, which is arranged downstream of the preforming device, is structured to assemble the preformed helixes into an assembly.
Abstract:
A facility for manufacturing at least first and second assemblies of M1 filamentary elements and M2 filamentary elements, in which each of the first and second assemblies includes a plurality of filamentary elements wound together in a helix, includes an assembling apparatus and a splitting apparatus. The assembling apparatus of the facility assembles M filamentary elements together into a layer of M filamentary elements around a temporary core, to form a temporary assembly. The splitting apparatus of the facility splits the temporary assembly into at least the first and second assemblies of M1 filamentary elements and M2 filamentary elements.
Abstract:
A tire includes a carcass structure including at least one carcass ply, a belt structure applied in a radially outer position with respect to the carcass structure and a tread band applied in a radially outer position with respect to the belt structure. The belt structure includes at least one reinforcing strip incorporating a plurality of reinforcing elements arranged substantially in the circumferential direction. The reinforcing elements include at least one high-elongation metal cord. The metal cord includes a plurality of intertwined strands and each strand includes a plurality of filaments. Advantageously all the filaments of each strand have a diameter not greater than 0.175 mm.
Abstract:
A cord material suitable for use in lined textile structures with a gliding component includes a plurality of uniform strands, and a deviant strand. The deviant strand is different from the uniform strands in some characteristic affecting aerodynamic or hydrodynamic properties of the cord, such as size or surface properties. Each uniform strand can have a substantially equal cross section area, while the deviant strand has a cross section area at least five times greater than one of the uniform strands. The strands can be braided or woven together. A major benefit of the material can be that vibration induced drag is significantly reduced or eliminated in lines made with the material. Another advantage is that lines made from the material can have more consistent, predictable line drag, which can improve the quality of handling.
Abstract:
A linear member for medical use having stretchability and flexibility while maintaining sufficient strength includes: an inner helical body including a plurality of helically wound wires, the inner helical body including a space portion inside, gap portions being provided in an axial direction between each wire; and an outer helical body provided outside of the inner helical body including a plurality of wires helically wound in such a manner as to form a layer along an axis of the helical body and a helical direction of the outer helical body is opposite to that of the inner helical body with gap portions being provided between each of the wires, the outer helical body being disposed to provide a multilayer structure.
Abstract:
In a method of manufacturing a two-layer multistrand metal cord, N wires constituting an outer strand layer are wound in a helix around two wires constituting an inner strand layer, so as to form a strand. L>1 previously formed strands, which are incorporated as outer strands of an unsaturated outer cord layer of the cord, are wound in a helix around K>1 previously formed strands, which are incorporated as inner strands of an inner cord layer of the cord, to form a wound cord. The wound cord is overtwisted, the overtwisted cord is balanced so as to obtain zero residual torque in the overtwisted cord, and the balanced overtwisted cord is untwisted.
Abstract:
A steel cord (30) with a high elongation at break of at least 5% comprises n strands (20), each of said strands (20) has m filaments (10) twisted together, n ranges from 2 to 7. m ranges from 2 to 9. The strands and the filaments are twisted in a same direction. The lay length of the cord is Lc and the lay length of said strand is Ls. The ratio of Ls to Lc (Ls/Lc) ranges from 0.25 to 1. Lc ranges from 16 mm to 26 mm. The strands are helically preformed. The E-modulus of the cord is more than 150000 N/mm2. The helical preforming of the strands allows to obtain a high elongation at break and a high E-modulus despite its long lay length Lc.
Abstract:
An elevator load bearing assembly (40) includes a plurality of synthetic or polymer cords (42) within a urethane jacket (44). The cords are prestretched and the jacket prevents the stretched cords from relaxing. The inventive arrangement provides a load bearing assembly (40) that has little or no elastic or construction stretch.
Abstract:
The invention is directed to a braided chemical fibre cable in which at least one electric conductor is contained, in which the cable is thermally stretched together with the conductor contained therein.
Abstract:
A combined cable comprising a core cable of high-strength synthetic fibers, which take the form of a twisted bundle of monofilaments or a plurality of twisted bundles of monofilaments, and comprising an outer layer of steel wire strands, is characterized in that the bundle or bundles of monofilaments is or are stretched, with a reduction in diameter, and held in this state by a sheathing, in particular a braided sheathing. The extension under strain of the core cable under load is thereby reduced, so that the load distribution between the cross section of steel and the cross section of synthetic material of the cable improves.In order, in the same sense, conversely to make the strain behavior of the layer of strands approximate that of the core cable, the cable has an intermediate layer of an elastic synthetic material into which the steel wire strands are pressed while spaced apart from one another in such a way that the outer layer extends under load, and contracts radially.A strand can be analogously constructed.