Abstract:
A dynamic random access memory (DRAM) having pairs of bitlines, each pair being connected to a first bit line sense amplifier, wordlines crossing the bitlines pairs forming an array, charge storage cells connected to the bitlines, each having an enable input connected to a wordline, the bit line sense amplifiers being connected in a two dimensional array, pairs of primary databuses being connected through first access transistors to plural corresponding bit line sense amplifiers in each row of the array, apparatus for enabling columns of the first access transistors, databus sense amplifiers each connected to a corresponding data bus pair, a secondary databus, the secondary databus being connected through second access transistors to the databus sense amplifiers, and apparatus for enabling the second access transistors.
Abstract:
A semiconductor memory device includes a first memory circuits connecting to a first bit line, a second bit line and a word line, a first pre-charge control circuit connecting to a first pre-charge control line, the first bit line and the second bit line and that pre-charges the first bit line and the second bit line on the basis of the input from the first pre-charge control line, and a read control circuit having a first transistor, a second transistor, a third transistor and a fourth transistor, wherein the fourth transistor is brought into conduction on the basis of the input from a charged global-bit-line driver control line, the column having the first bit line and the second bit line is thus selected, and the information held in the memory circuit connecting to the driven word line among the memory circuits is output to the third bit line.
Abstract:
The disclosure relates to a sense amplifier comprising a cascode transistor and means for biasing the cascode transistor, supplying a control voltage to a gate terminal of the cascode transistor. The means for biasing the cascode transistor comprise means for isolating the gate terminal of the cascode transistor from the output of the voltage generator during a first period of the precharge phase, so as to boost the bitline voltage, then for linking the gate terminal to the output of the voltage generator during a second period of the precharge phase. Application in particular to sense amplifiers for non-volatile memories.
Abstract:
A memory system that includes a first bit line coupled to a first set of dynamic random access memory (DRAM) cells, a second (complementary) bit line coupled to a second set of DRAM cells, and a sense amplifier coupled to the first and second bit lines. The sense amplifier includes a pair of cross-coupled inverters (or a similar latching circuit) coupled between the first and second bit lines, as well as a first select transistor coupling the first bit line to a first global bit line, and a second select transistor coupling the second bit line to a second global bit line. The first and second select transistors are independently controlled, thereby enabling improved read and write access sequences to be implemented, whereby signal loss associated with bit line coupling is eliminated, ‘read bump’ conditions are eliminated, and late write conditions are eliminated.
Abstract:
A semiconductor memory device includes first and second sub-memory-cell areas configured to form a memory cell matrix and include a first bit line and a second bit line respectively to form a data transfer path corresponding to a predetermined memory cell, an additional bit line configured to cross the first sub-memory-cell area and form a data transfer path by being connected with the second bit line and a sensing and amplifying unit configured to sense and amplify data inputted through the additional bit line and the first bit line.
Abstract:
In one embodiment of the present invention, a method for connecting a plurality of bit lines to sense circuitry comprises providing a plurality of bit lines extending from a memory array in a first metal layer. The plurality of bit lines are separated from each other by an average spacing x in a first region of the first metal layer. The method further comprises elevating a portion of the plurality of bit lines into a second metal layer overlying the first metal layer. The elevated bit lines are separated from each other by an average spacing y in the second metal layer, with y>x. The method further comprises extending a portion of the plurality of bit lines into a second region of the first metal layer. The extended bit lines are separated from each other by an average spacing z in the second region of the first metal layer, with z>x. The method further comprises connecting a bit line in the second metal layer and a bit line in the first metal layer to the sense circuitry.
Abstract:
A semiconductor memory device includes a cell block including a first bit line, a sense amplifier unit including a second bit line and configured to amplify a data signal applied to the second bit line, a connection unit configured to selectively connect the first bit line and the second bit line, a connection control unit configured to receive a control signal for driving the sense amplifier unit and a selection signal for selecting the cell block and generate a connection signal for activating the connection unit at a first time, and a sense amplifier driving control unit configured to receive the control signal and generate a sense amplifier driving signal for driving the sense amplifier unit at a second time after the first time.
Abstract:
A semiconductor memory device includes first and second bank groups and an internal column address generating circuit. Each of the first and second bank groups includes at least one bank. The internal column address generating circuit converts a column address into a first internal column address and outputs the first internal column address through a first transmission line in response to a bank address if a read operation or a write operation is performed on a bank of the first bank group. Also, the internal column address generating circuit converts the column address into a second internal column address and outputs the second internal column address through a second transmission line in response to the bank address if a read operation or a write operation is performed on a bank of the second bank group.
Abstract:
A non-volatile memory device includes a plurality of memory units provided in an array, each memory unit having a plurality of resistive memory cells and a local word line. Each resistive memory units has a first end and a second end, the second ends of the resistive memory cells of each memory unit being coupled to the local word line of the corresponding memory unit. A plurality of bit lines is provided, each bit line being coupled to the first end of one of the resistive memory cells. A plurality of select transistors is provided, each select transistor being assigned to one of the memory units and having a drain terminal coupled to the local word line of the assigned memory unit. First and second global word lines are provided, each global word line being coupled to a control terminal of at least one select transistor. First and second source lines are provided, each source line being coupled to a source terminal of at least one select transistor. The memory device is configured to concurrently read out all of the resistive memory cells in one of the memory units selected for a read operation.
Abstract:
A dynamic circuit utilizing a passgate on a bit line is disclosed. In one embodiment, a precharge circuit is coupled to a first bit line, while a discharge circuit is coupled to a second bit line. A passgate transistor is coupled between the first bit line and the second bit line. A gate terminal of the passgate transistor may be hardwired or otherwise held to a static voltage such that it remains active when the circuit is operating. During a precharge phase, the precharge circuit may precharge the first bit line to a voltage that is at or near a supply voltage of the circuit. The second bit line may be precharged, through the passgate transistor, responsive to the precharging of the first bit line. The second bit line may be precharged to a voltage that is at least a threshold voltage less than the supply voltage.