Abstract:
An electro-optical (EO) radiation collector for collecting and/or transmitting EO radiation (which may include EO radiation in the visible wavelengths) for transmission to an EO sensor. The EO radiation collector may be used with an arc flash detection device or other protective system, such as an intelligent electronic device (IED). The arc flash detection device may detect an arc flash event based upon EO radiation collected by and/or transmitted from the EO radiation collector. The EO radiation collector may receive an EO conductor cable, an end of which may be configured to receive EO radiation. A portion of the EO radiation received by the EO radiation collector may be transmitted into the EO conductor cable and transmitted to the arc flash detection device. The EO radiation collector may be adapted to receive a second EO conductor cable, which may be used to provide redundant EO transmission and/or self-test capabilities.
Abstract:
The present invention provides a charged particle beam apparatus which is provided with a tilting deflector which is disposed between a charged particle source and an objective lens and tilts a charged particle beam, wherein a first optical element includes an electromagnetic quadrupole which generates dispersion to suppress the dispersion which is generated by deflection by the tilting deflector, and a second optical element is composed of a deflector for deflecting the charged particle beam which enters the first optical element or an electromagnetic quadrupole which causes the charged particle beam to generate a dispersion different from the dispersion generated by the first optical element.
Abstract:
An multi-ion beam implantation apparatus and method are disclosed. An exemplary apparatus includes an ion beam source that emits at least two ion beams; an ion beam analyzer; and a multi-ion beam angle incidence control system. The ion beam analyzer and the multi-ion beam angle incidence control system are configured to direct the emitted at least two ion beams to a wafer.
Abstract:
Provided is a focused ion beam apparatus including a control portion configured to: store in advance, in a condenser voltage table, a calculation value of a condenser voltage for obtaining a reference beam current for all each of a plurality of apertures; obtain an experimental value of the condenser voltage for obtaining the reference beam current for a reference aperture; obtain a correction value of the condenser voltage by subtracting the calculation value stored for the reference aperture from the experimental value for the reference aperture; obtain setting values of the condenser voltage by adding the correction value to the calculation values stored for each of the plurality of the apertures; and store the obtained setting value in the condenser voltage table.
Abstract:
Systems and methods are provided to perform efficient, automatic adjustment of cyclotron beam currents within a wide range for multiple treatment layers within the same patient and treatment session. In one embodiment, efficient adjustment is achieved by using beam current attenuation by an electrostatic vertical deflector installed in the inner center of the cyclotron. The beam current may, for example, be adjusted by the high voltage applied to the electrostatic vertical deflector. In front of each treatment the attenuation curve of the vertical deflector is recorded. Based on this attenuation curve, the vertical deflector voltage for the needed beam current of each irradiation layer is interpolated. With this procedure the beam current could be automatically adjusted in minimal time over a wide range while maintaining a high level of precision.
Abstract:
Systems and methods are provided to perform efficient, automatic cyclotron initialization, calibration, and beam adjustment. A process is provided that allows the automation of the initialization of a cyclotron after overnight or maintenance imposed shutdown. In one embodiment, five independent cyclotron system states are defined and the transition between one state to another may be automated, e.g., by the control system of the cyclotron. According to these embodiments, it is thereby possible to achieve beam operation after shutdown with minimal manual input. By applying an automatic procedure, all active devices of the cyclotron (e.g., RF system, extraction deflectors, ion source) are respectively ramped to predefined parameters.
Abstract:
The present invention relates to a method and apparatus for varying the cross-sectional shape of an ion beam, as the ion beam is scanned over the surface of a workpiece, to generate a time-averaged ion beam having an improved ion beam current profile uniformity. In one embodiment, the cross-sectional shape of an ion beam is varied as the ion beam moves across the surface of the workpiece. The different cross-sectional shapes of the ion beam respectively have different beam profiles (e.g., having peaks at different locations along the beam profile), so that rapidly changing the cross-sectional shape of the ion beam results in a smoothing of the beam current profile (e.g., reduction of peaks associated with individual beam profiles) that the workpiece is exposed to. The resulting smoothed beam current profile provides for improved uniformity of the beam current and improved workpiece dose uniformity.
Abstract:
The present invention relates to a method and apparatus for varying the cross-sectional shape of an ion beam, as the ion beam is scanned over the surface of a workpiece, to generate a time-averaged ion beam having an improved ion beam current profile uniformity. In one embodiment, the cross-sectional shape of an ion beam is varied as the ion beam moves across the surface of the workpiece. The different cross-sectional shapes of the ion beam respectively have different beam profiles (e.g., having peaks at different locations along the beam profile), so that rapidly changing the cross-sectional shape of the ion beam results in a smoothing of the beam current profile (e.g., reduction of peaks associated with individual beam profiles) that the workpiece is exposed to. The resulting smoothed beam current profile provides for improved uniformity of the beam current and improved workpiece dose uniformity.
Abstract:
Various embodiments of the present invention are directed to compact, sub-wavelength optical resonators. In one aspect, an optical resonator comprises two approximately parallel reflective structures positioned and configured to form a resonant cavity. The resonator also includes a fishnet structure disposed within the cavity and oriented approximately parallel to the reflective structures. The resonant cavity is configured with a cavity length that can support resonance with electromagnetic radiation having a fundamental wavelength that is more than twice the cavity length.
Abstract:
The invention comprises a proton beam positioning method and apparatus used in conjunction with multi-axis charged particle radiation therapy of cancerous tumors. The proton beam verification system allows for monitoring of the actual proton beam position in real-time without destruction of the proton beam. The system includes a coating or thin layer substantially in contact with a foil covering the end of an exit nozzle or is a layer located after the x- and y-axis proton beam scanning controllers and before the patient. The coating yields a measurable spectroscopic response, spatially viewable by the detector, as a result of transmission by the proton beam. The proton beam position is monitored by the detector and compared to the calibration and/or treatment plan to verify accurate proton delivery to the tumor and/or as a proton beam shutoff safety indicator.