Abstract:
A method of filling a plurality of trenches etched in a substrate. In one embodiment the method includes depositing a layer of spin-on glass material over the substrate and into the plurality of trenches; exposing the layer of spin-on glass material to a solvent; curing the layer of spin-on glass material; and depositing a layer of silica glass over the cured spin-on glass layer using a chemical vapor deposition technique.
Abstract:
The present invention generally provides a deposition chamber for depositing materials which require vaporization, especially low volatility precursors, which are transported as a liquid to a vaporizer to be converted to vapor phase through one or more vaporizing elements and which must be transported at elevated temperatures to prevent unwanted condensation on chamber components. In one aspect, the chamber comprises a series of heated temperature controlled internal liners as vaporizing surfaces which are configured for rapid removal, cleaning and/or replacement and preferably are made of a material having a thermal coefficient of expansion close to that of the deposition material. The vaporizing surfaces “flash” sprayed liquid precursors on the surface of the vaporizing surfaces and then purify the flashed precursors before flowing further into the system. Particularly contemplated is an apparatus and process for the deposition of a metal-oxide film, such as a barium, strontium, titanium oxide (BST) film, on a silicon wafer to make integrated circuit capacitors useful in high capacity dynamic memory modules. Preferably, internal surfaces of the chamber are adjustable and maintainable at a suitable temperature above ambient, e.g., about 150° C. to about 300° C., to prevent decomposition and/or condensation of vaporized material on the chamber and related gas flow surfaces.
Abstract:
Processes which use the same precursor material for forming a metal electrode deposition as for forming a dielectric layer deposition. The layers may be successively formed in the same chamber, or may be formed in like chambers located in a processing system.
Abstract:
The invention relates to an apparatus and process for the vaporization of liquid precursors and deposition of a film on a suitable substrate. In one aspect, an apparatus and process for the control of a gas flowed through a gas feedthrough in a substrate processing chamber and system is provided. In another aspect, a deposition chamber is provided for depositing BST and other materials which require vaporization, especially low volatility precursors which are transported as a liquid to a vaporizer to be converted to vapor phase and which must be transported at elevated temperatures to prevent unwanted condensation on chamber components. The chamber comprises a series of heated temperature controlled internal liners, such as a heated gas feedthrough.
Abstract:
A support member for supporting a substrate in a process chamber, the support member having a substrate support surface with one or more isolated recessed areas. A vacuum channel and a gas channel are formed in the support member along a common plane and are coupled to a vacuum source and gas source respectively. The gas channel comprises two or more concentrically disposed annular gas channels encompassing the vacuum channel. The vacuum channel is coupled to the support surface, and in particular to the one or more recessed areas, by a plurality of conduits. A portion of the conduits is disposed diametrically exterior to at least one of the annular gas channels and communicates with the vacuum channel via bypass channels.
Abstract:
The present invention provides an approach which provides an increase in the number of usable substrates with a film, such as titanium nitride, deposited thereon at a sufficient deposition rate and where the film meets uniformity and resistivity specifications as well as providing good step coverage. In accordance with an embodiment, the present invention provides an apparatus for substrate processing. The apparatus circulates a heat exchange medium through a passage in a chamber body of a vacuum chamber, and heats a heater pedestal having a surface for supporting the substrate to a heater temperature. The heat exchange medium has a heat exchange temperature of about 60.degree. C. or less. The the apparatus also flows a gas into the chamber at a flow rate to deposit a film on a substrate, where the flow rate provides an effective temperature of the substrate lower than the heater temperature and where the film meets uniformity and resistance specifications after deposition onto a number of substrates. This number is less than twenty-five, in some embodiments, and less than ten in other embodiments. The use of the present invention thus avoids the discarding of the initial hundreds of processed substrates not meeting specifications that is typically experienced with the prior art processes.
Abstract:
The present invention provides systems, methods and apparatus for heating substrates in a processing chamber to temperatures up to at least 700.degree. C. In accordance with an embodiment of the invention a heater assembly with an inner core of high thermal conductivity is encased in a shell of lower thermal conductivity, creating a nearly isothermal interface between the core and shell. The inner core is brazed to the shell, promoting thermal transfer, and acts as a thermal short between opposing surfaces of the shell. The heater assembly is designed to minimize thermal stresses arising from the difference in the thermal expansion coefficients of the various components of the multi-layered heater assembly. In one embodiment of the invention, two independently-powered heating elements are arranged concentrically to each other to create a dual zone heater. A thermal gap in the inner core between the inner and outer heating elements de-couples the zones and provides a more controllable temperature profile at the surface of the heater, including excellent temperature uniformity. In one embodiment, an RF isolator is placed between a heater and a support shaft, allowing the heater to be powered as an electrode in a plasma process.
Abstract:
The present invention provides systems, methods and apparatus for depositing titanium films at rates up to 200 .ANG./minute on semiconductor substrates from a titanium tetrachloride source. In accordance with an embodiment of the invention, a ceramic heater assembly with an integrated RF plane for bottom powered RF capability allows PECVD deposition at a temperature of at least 400.degree. C. for more efficient plasma treatment. A thermal choke isolates the heater from its support shaft, reducing the thermal gradient across the heater to reduce the risk of breakage and improving temperature uniformity of the heater. A deposition system incorporates a flow restrictor ring and other features that allow a 15 liters/minute flow rate through the chamber with minimal backside deposition and minimized deposition on the bottom of the chamber, thereby reducing the frequency of chamber cleanings, and reducing clean time and seasoning. Deposition and clean processes are also further embodiments of the present invention.
Abstract:
The present invention provides systems, methods and apparatus for depositing titanium films at rates up to 200 .ANG./minute on semiconductor substrates from a titanium tetrachloride source. In accordance with an embodiment of the invention, a ceramic heater assembly with an integrated RF plane for bottom powered RF capability allows PECVD deposition at a temperature of at least 400.degree. C. for more efficient plasma treatment. A thermal choke isolates the heater from its support shaft, reducing the thermal gradient across the heater to reduce the risk of breakage and improving temperature uniformity of the heater. A deposition system incorporates a flow restrictor ring and other features that allow a 15 liters/minute flow rate through the chamber with minimal backside deposition and minimized deposition on the bottom of the chamber, thereby reducing the frequency of chamber cleanings, and reducing clean time and seasoning. Deposition and clean processes are also further embodiments of the present invention.
Abstract:
A particular configuration of a compact self-aligning lift mechanism is provided for lifting the stem of a pedestal in a processing chamber while minimizing process anomalies due to geometric misalignment and binding of moving pieces. The force associated with supporting a stem in a processing chamber is routed through a first arm through a base portion of a carrier bracket where it engages a linear bearing such that the truck and track of the linear bearing absorb all forces riot aligned with the bearing. A second arm extending from the base portion, for example through a set of slots adjacent to the bearing track support member, is attached to a lift mechanism which can oppose the force from the pedestal stem such that the displacements of the first and second arms are predictable based on the force on that arm. A compliant nut is used so that the drive screw can be somewhat misaligned with the linear bearing track without causing binding, misalignment, or non-repeatability of substrate positioning during processing.