摘要:
An integrated circuit including a gate electrode is disclosed. One embodiment provides a transistor including a first source/drain electrode and a second source/drain electrode. A channel is arranged between the first and the second source/drain electrode in a semiconductor substrate. A gate electrode is arranged adjacent the channel layer and is electrically insulated from the channel layer. A semiconductor substrate electrode is provided on a rear side. The gate electrode encloses the channel layer at at least two opposite sides.
摘要:
The invention relates to a semiconductor memory having a multiplicity of memory cells and a method for forming the memory cells. The semiconductor memory generally includes a semiconductor layer arranged on a substrate surface that includes a normally positioned step between a deeper region and a higher region. The semiconductor memory further includes doped contact regions, channel regions, a trapping layer arranged on a gate oxide layer, and at least one gate electrode. The method for forming the memory cells includes patterning a semiconductor layer to form a deeper semiconductor region and a higher semiconductor region having a step positioned between the regions. The method further includes forming a first oxide layer and a trapping layer, and then removing portions of the trapping layer and the first oxide layer and applying a second oxide layer at least regions of a doped region, the trapping layer, and the step area, and applying a gate electrode to the second oxide layer and doping, at least in regions, of the deeper semiconductor region and the higher semiconductor region to form a deeper contact region and a higher contact region.
摘要:
The present invention provides a production method for a FinFET transistor arrangement, and a corresponding FinFET transistor arrangement. The method comprises the following steps: provision of a substrate (106, 108); formation of an active region (1) on the substrate, said active region having a source region (114), a drain region (116) and an intervening fin-like channel region (113b′; 113b″) for each individual FinFET transistor; formation of a gate dielectric (11) and a gate region (13, 14, 15) over the fin-like channel region (113b′; 113b″) for each individual FinFET transistor; the formation of the fin-like channel region (113b′; 113b″) having the following steps: formation of a hard mask (S1-S4) on the active region (1), said hard mask having a pad oxide layer (30), an overlying pad nitride layer (50) and nitride sidewall spacers (7); anisotropic etching of the active layer (1) using the hard mask (S1-S4) for the formation of STI trenches (G1-G5); filling of the STI trenches (G1-G5) with an STI oxide filling (9); polishing-back of the STI oxide filling (9) as far as the top side of the hard mask (S1-S4); etching-back of the polished-back STI oxide filling (9) as far as a residual height (h′) in the STI trenches (G1-G5); selective removal of the pad nitride layer (50) and the nitride sidewall spacers (7) with respect to the pad oxide layer (30), the etched-back STI oxide filling (9) and the active region (1) for the formation of a modified hard mask (S1′-S4′); anisotropic etching of the active layer (1) using the modified hard mask (S1′-S4′) for the formation of widened STI trenches (G1′-G5′), the fin-like channel regions (113b′; 113b″) of the active region (1) remaining for each individual FinFET transistor.
摘要:
In a semiconductor memory, a plurality of FinFET arrangements with trapping layers or floating gate electrodes as storage mediums are present on respective top sides of fins made from semiconductor material. The material of the gate electrodes is also present on two side walls of the fins, in order to form side wall transistors, and between the gate electrodes forms parts of a word line belonging to the corresponding fin.
摘要:
A semiconductor memory device comprises a plurality of memory cells, each memory cell having a respective transistor. The transistor comprises a transistor body of a first conductivity type, a drain area and a source area each having a second conductivity type, wherein said drain area and source area are embedded in the transistor body on a first surface of said transistor body, a gate structure having a gate dielectric layer and a gate electrode. Said gate structure is arranged between said drain area and said source area. An emitter area of said first conductivity type is provided wherein said emitter area is arranged on top of said drain area.
摘要:
The semiconductor memory device comprises a plurality of memory cells. Each memory cell comprises a respective transistor and a respective capacitor unit. The transistor comprises a transistor body of a first conductivity type, a drain area and a source area each having a second conductivity type, the drain area and source area are embedded in the transistor body on a first surface of the transistor body, and a gate structure having a gate dielectric layer and a gate electrode, the gate structure is arranged between the drain area and the source area. An isolation trench is arranged adjacent to said transistor body, having a dielectric layer and a conductive material, wherein the isolation trench is at least partially filled with the conductive material. The conductive material is isolated by said dielectric layer from the transistor body. The capacitor unit is formed by the transistor body representing a first electrode and the conductive material representing the second electrode.
摘要:
The invention relates to a semiconductor memory having a multiplicity of memory cells, each of the memory cells having N (e.g., four) vertical memory transistors with trapping layers. Higher contact regions are formed in higher semiconductor regions extending obliquely with respect to the rows and columns of the cell array, the gate electrode generally being led to the step side areas of the higher semiconductor region. A storage density of 1-2F2 per bit can thus be achieved.
摘要:
The memory cell array comprises a plurality of parallel fins provided as bitlines arranged at a distance of down to about 40 nm from one another and having a lateral dimension of less than about 30 nm, subdivided into pairs of adjacent first and second fins. A charge-trapping memory layer sequence is arranged on the fins. Wordlines are arranged across the fins, and source/drain regions are located in the fins between the wordlines and at the ends of the fins. There are preferably self-aligned contact areas of the source/drain regions at the ends of the fins, each contact area being common to the fins of one of said pairs. Select transistors and select lines are provided for the first and second fins individually to enable a separate addressing of the memory cells.
摘要:
This invention relates to a method for producing an NROM semiconductor memory device and a corresponding NROM semiconductor memory device. The inventive production method comprises the following steps: a plurality of spaced-apart U-shaped MOSFETS are provided along rows in a first direction and along gaps in a second direction inside trenches of a semiconductor substrate, said U-shaped MOSFETS comprising a multilayer dielectric, especially an ONO dielectric, for trapping charges; source/drain areas are provided between the U-shaped MOSFETS in intermediate spaces located between the rows that extend parallel to the gaps; insulating trenches are provided in the source/drain areas between the U-shaped MOSFETS of adjacent gaps, down to a certain depth in the semiconductor substrate, said insulating trenches cutting up the source/drain areas into respective bit lines; the insulating trenches are filled with an insulating material; and word lines are provided for connecting respective rows of U-shaped MOSFETS.
摘要:
A nonvolatile memory cell, memory cell arrangement, and method for production of a nonvolatile memory cell is disclosed. The nonvolatile memory cell includes a vertical field-effect transistor (FET). The FET contains a nanoelement arranged as a channel region and an electrically insulating layer. The electrically insulating layer at least partially surrounds the nanoelement and acts as a charge storage layer and as a gate-insulating layer. The electrically insulating layer is arranged such that electrical charge carriers may be selectively introduced into or removed from the electrically insulating layer and the electrical conductivity characteristics of the nanoelement may be influenced by the electrical charge carriers introduced into the electrically insulating layer.