摘要:
A ESD protection scheme is disclosed for circuits with multiple power domains. Embodiments include: coupling a first power clamp to a first power rail and a first ground rail of a first domain; coupling a second power clamp to a second power rail and a second ground rail of a second domain; providing a blocking circuit for blocking current from an ESD event; providing an I/O interface connection in the first domain for transmitting signals from the first domain to the blocking circuit; providing a core interface connection in the second domain for transmitting signals from the blocking circuit to the second domain; coupling an input connection of the blocking circuit to the I/O interface connection; and coupling an output connection of the blocking circuit to a core interface connection.
摘要:
An approach for providing a latch-up robust silicon control rectifier (SCR) is disclosed. Embodiments include providing a first N+ region and a first P+ region in a substrate for a SCR; providing first and second n-well regions in the substrate proximate the first N+ and P+ regions; providing a second N+ region in the first n-well region, and a second P+ region in the second n-well region; and coupling the first N+ and P+ regions to a ground rail, the second N+ region to a power rail, and the second P+ region to an I/O pad.
摘要:
A device having an ESD module is disclosed. The ESD module includes an ESD circuit coupled between first and second rails and a control circuit coupled between the rails and to the ESD circuit. When the control circuit senses an ESD event, it causes the ESD circuit to create a current path between the rails to dissipate ESD current. When no ESD event is sensed, the control circuit ensures that no current path is created between the rails to prevent latch-up.
摘要:
A device is presented. The device includes a first circuit coupled to first and second power rails of the device. The first circuit is subject to a latch up event in the presence of a latch up condition. The latch up event includes a low resistance path created between the first and second power rails. The device also includes a latch up sensing (LUS) circuit coupled to the first circuit. The LUS circuit is configured to receive a LUS input signal from the first circuit and generates a LUS output signal to the first circuit. When the input signal is an active latch up signal which indicates the presence of a latch up condition, the LUS circuit generates an active LUS output signal which creates a break in the low resistance path to terminate the latch up event.
摘要:
An electrostatic discharge (ESD) protection circuit includes a clamp transistor, and inverter, a resistance-capacitance (RC) circuit, and a current mirror. The clamp transistor is coupled between a first supply node and a second supply node. The inverter has an input end and an output end, and the output end of the inverter is coupled with a gate of the clamp transistor. The RC circuit is coupled to the first supply node. The current mirror includes a first transistor and a second transistor. The first transistor is coupled between the input end of the inverter and the second supply node, and the second transistor is coupled between the RC circuit and the second supply node.
摘要:
A device includes a plurality of connectors on a top surface of a package component. The plurality of connectors includes a first connector having a first lateral dimension, and a second connector having a second lateral dimension. The second lateral dimension is greater than the first lateral dimension. The first and the second lateral dimensions are measured in directions parallel to a major surface of the package component.
摘要:
In a programmable logic device having high-speed serial interface channels, a clock distribution network for providing one or more high-speed clocks to dynamic phase alignment circuitry of those high-speed serial interfaces includes at least one bus that is segmentable (e.g. using tristatable buffers). This allows the bus to be divided into different portions that can be connected to different clock sources when the high-speed serial interfaces are running at different speeds. In one embodiment, the segmenting elements (e.g., the aforementioned buffers) are located between selected channels (e.g., every fourth channel), limiting the size of the different segments. In another embodiment, segmenting elements are located between each channel, allowing complete user freedom in selecting the sizes of the segments. Thus, instead of providing a bus for every clock source, multiple clocks can be made available to different channels by segmenting a single bus.
摘要:
This disclosure provides apparatus, systems and methods for manufacturing electromechanical systems (EMS) packages. One method includes making an EMS package that includes an out-gassable anti-stiction coating. The anti-stiction coating may be a solvent that is included within part of a desiccant mixture. In some implementations, the method includes sealing an EMS device into a package and then heating the package using a temperature profile that out-gasses at least a portion of a residual solvent. The method may include an incubation bake cycle to distribute anti stiction material to display elements within the EMS package. The incubation bake cycle may also more evenly distribute contaminants within the EMS package so as to reduce their effects.
摘要:
Methods and apparatus for performing end point determination. A method includes receiving a wafer into an etch tool chamber for performing an RIE etch; beginning the RIE etch to form vias in the wafer; receiving in-situ measurements of one or more physical parameters of the etch tool chamber that are correlated to the RIE etch process; providing a virtual metrology model for the RIE etch in the chamber; inputting the received in-situ measurements to the virtual metrology model for the RIE etch in the chamber; executing the virtual metrology model to estimate the current via depth; comparing the estimated current via depth to a target depth; and when the comparing indicates the current via depth is within a predetermined threshold of the target depth; outputting a stop signal. An apparatus for use with the method embodiment is disclosed.
摘要:
A digital signal processing circuit includes a combining stage and an output stage. The combining stage is arranged to receive a plurality of non-overlapping clock signals having a same frequency but different phases, receive a plurality of first input bit streams, and generate a first output bit stream by combining the first input bit streams according to the non-overlapping clock signals. The output stage is arranged to generate an output according to the first output bit stream. A digital signal processing method includes: receiving a plurality of non-overlapping clock signals having a same frequency but different phases; receiving a plurality of first input bit streams; generating a first output bit stream by combining the first input bit streams according to the non-overlapping clock signals; and generating an output according to the first output bit stream.