Abstract:
An article is described such as a tape or sheet, comprising a PLA-based film and a layer of (e.g. pressure sensitive) adhesive disposed on the film. The PLA-based film comprises a semicrystalline polylactic acid polymer; a second polymer such as polyvinyl acetate polymer having a glass transition temperature (Tg) of at least 25° C.; and plasticizer. The tape or sheet may further comprises a low adhesion backsize or a release liner. The article can be suitable for various end-uses. In one embodiment, the tape is a paint masking tape. In another embodiment, the tape is a floor marking tape.
Abstract:
Backing films for adhesive tapes are presented, as well as adhesive tapes comprising such backing films, which may include tapes used in construction such as seam sealing tapes, roofing tapes, and flashing tapes. The backing film comprises a core layer, a first skin layer, and optionally a second skin layer, where the backing film has a coefficient of thermal expansion of less than 90 ppm/° C. measured in at least one direction within the plane of the film, and, in some embodiments, a Young's modulus of less than 550 MPa as measured in at least one direction. In some embodiments, the backing film has a coefficient of thermal expansion of not more than 91.8 ppm/° C. and a Young's modulus of not more than 540 MPa as measured in any direction within the plane of the film. In some embodiments, the core layer comprises a polyolefin, and skin layers comprise a thermoplastic elastomer.
Abstract:
Provided are adhesive-backed films and related methods useful in laser cutting a substrate protected by an adhesive-backed film. The adhesive-backed film includes a base layer comprised of a polymer and having opposing first and second major surfaces and an adhesive layer comprising a pressure-sensitive adhesive directly or indirectly coupled to the second major surface. An infrared absorber is present in one or both of the polymer and the pressure-sensitive adhesive, and the adhesive-backed film is sufficiently transparent to enable visual inspection of a surface having the adhesive-backed film disposed thereon.
Abstract:
The relates to multi-layer sealing films for microstructured articles. The multi-layer sealing film may include two or more layers. The multi-layer sealing film has an elastic modulus of at least 3.5×105 kPa and the flexural rigidity of the microstructured article is less than about 4.0×10−8 N·m2.
Abstract:
The present application is directed to an adhesive article comprising a pressure sensitive adhesive layer and a release layer in contact with the pressure sensitive adhesive layer. The release layer comprises a polyolefin block copolymer. Generally, the polyolefin block copolymer has a density of no greater than 0.9 g/cc.
Abstract:
The present disclosure generally relates to retroreflective articles and methods of making retroreflective articles including a plurality of microreplicated retroreflective elements (prismatic elements and lenslets) and a multilayer seal film adjacent to the retroreflective elements. The multilayer film includes a polymeric sealing layer and an adhesive layer. In some embodiments, the multilayer film includes a release liner. Seal legs extend through all layers of the multilayer film In some embodiments, the retroreflective article is retroreflective sheeting. In some embodiments, the retroreflective sheeting and the multilayer film are laminated, embossed, and/or sealed in a single processing step.
Abstract:
Described herein are release layers formed via solventless extrusion. The release layers include a polyolefin and an alkyl dimethicone. The release layers exhibit tailorable release properties from pressure-sensitive adhesives. The release layers are simple to make and require no post-treatment in order to impart the observed release properties. The release layers are adaptable to multilayer extrusion, blown film formation, and cast film formation techniques.
Abstract:
Described herein are release layers formed via solventless extrusion. The release layers include a polyolefin and an alkyl dimethicone. The release layers exhibit tailorable release properties from pressure-sensitive adhesives. The release layers are simple to make and require no post-treatment in order to impart the observed release properties. The release layers are adaptable to multilayer extrusion, blown film formation, and cast film formation techniques.