摘要:
Embodiments of the invention provide memory devices and methods for forming such memory devices. In one embodiment, a method for fabricating a non-volatile memory device on a substrate is provided which includes depositing a first polysilicon layer on a substrate surface, depositing a silicon oxide layer on the first polysilicon layer, depositing a first silicon oxynitride layer on the silicon oxide layer, depositing a silicon nitride layer on the first silicon oxynitride layer, depositing a second silicon oxynitride layer on the silicon nitride layer, and depositing a second polysilicon layer on the second silicon oxynitride layer. In some examples, the first polysilicon layer is a floating gate and the second polysilicon layer is a control gate.
摘要:
Embodiments of the invention provide memory devices and methods for forming such memory devices. In one embodiment, a method for fabricating a non-volatile memory device on a substrate is provided which includes depositing a first polysilicon layer on a substrate surface, depositing a silicon oxide layer on the first polysilicon layer, depositing a first silicon oxynitride layer on the silicon oxide layer, depositing a silicon nitride layer on the first silicon oxynitride layer, depositing a second silicon oxynitride layer on the silicon nitride layer, and depositing a second polysilicon layer on the second silicon oxynitride layer. In some examples, the first polysilicon layer is a floating gate and the second polysilicon layer is a control gate.
摘要:
Processes for making a high K (dielectric constant) film using an ultra-high purity hafnium containing organometallic compound are disclosed. Also described are devices incorporating high K films made with high purity hafnium containing organometallic compounds.
摘要:
The present invention provides a method for manufacturing a high quality oxide layer having a uniform thickness. The method includes providing a semiconductor substrate, and forming an oxide layer having a substantially uniform thickness on the semiconductor substrate, and in a zone of pressure of less than about 4 Torr or greater than about 25 Torr.
摘要:
A bipolar device (10) includes an oxide layer (24) which is grown on the surface (16) of a semiconductor substrate (12) by immersing the surface in ozonated deionized water. By selecting an appropriate temperature of the water and concentration of the ozone, the thickness of the film can be maintained within fine tolerances from lot to lot, and over the surface of a wafer (W) comprising the substrate.
摘要:
A method and structure providing N-profile engineering at the poly/gate oxide and gate oxide/Si interfaces of a layered polysilicon/amorphous silicon structure of a semiconductor device. NH3 annealing provides for the introduction of nitrogen to the interface, where the nitrogen suppresses Boron diffusion, improves gate oxide integrity, and reduces the sites available for trapping hot carriers which degrade device performance.
摘要:
This invention includes a novel synthesis of a three-step process of growing, depositing and growing SiO2 under low pressure, e.g., 0.2-10 Torr, to generate high quality, robust and reliable gate oxides for sub 0.5 micron technologies. The first layer, 1.0-3.0 nm is thermally grown for passivation of the Si-semiconductor surface. The second deposited layer, which contains a substantial concentration of a hydrogen isotope, such as deuterium, forms an interface with the first grown layer. During the third step of the synthesis densification of the deposited oxide layers occurs with a simultaneous removal of the interface traps at the interface and growth of a stress-modulated SiO2 occurs at the Si/first grown layer interface in the presence of a stress-accommodating interface layer resulting in a planar and stress-reduced Si/SiO2 interface. The entire synthesis is done under low-pressure (e.g., 0.2-10 Torr) for slowing down the oxidation kinetics to achieve ultrathin sublayers and may be done in a single low-pressure furnace by clustering all three steps.
摘要:
The present invention provides a method of passivating a semiconductor device having a capping layer formed thereover, comprising: (1) subjecting the semiconductor device to a high pressure within a pressure chamber and (2) exposing the semiconductor device to a passivating gas. The high pressure causes the passivating gas, such as a deuterated passivating gas, to penetrate the capping layer and thereby passivate the semiconductor device. The method provided by the present invention is, therefore, particularly useful in those instances where a final passivation step is desired after the formation of the capping layer. It is believed that the hydrogen isotope bonds to dangling bond sites within the semiconductor device, which are most often present at a silicon/silicon dioxide interface. Further, because of their larger mass, these hydrogen isotope atoms are not easily removed by electron flow during the operation of the device as is the case with the lighter hydrogen atoms.
摘要:
This invention includes a novel synthesis of a three-step process of growing, depositing and growing SiO.sub.2 under low pressure, e.g., 0.2-10 Torr, to generate high quality, robust and reliable gate oxides for sub 0.5 micron technologies. The first layer, 1.0-3.0 nm is thermally grown for passivation of the Si-semiconductor surface. The second deposited layer 1.0-5.0 nm forms an interface to with the first grown layer. During the third step of the synthesis densification of the deposited oxide layers occurs with a simultaneous removal of the interface traps at the interface and growth of a stress-modulated SiO.sub.2 occurs at the Si/first grown layer interface in the presence of a stress-accommodating interface layer resulting in a planar and stress-reduced Si/SiO.sub.2 interface. The entire synthesis is done under low-pressure (e.g., 0.2-10 Torr) for slowing down the oxidation kinetics to achieve ultrathin sublayers and may be done in a single low-pressure furnace by clustering all three steps. For light nitrogen-incorporation (
摘要:
An extruded hollow plate and an electric vehicle battery casing formed by combining the extruded hollow plates. The extruded hollow plate has a plate-shaped body having a constant cross-section, a cavity is provided inside the plate-shaped body, a protrusion and/or a groove is provided at an end of the body, the protrusion is bent downward, the groove opens upwards as a hook, and the arc surfaces forming the protrusion and the groove each comprise at least two involute surfaces. Compared with the existing battery box manufacturing process of friction stir welding, the combining and bonding connection manner has the significant advantages of rapid production speed, a low device cost, high flatness, etc.