Abstract:
Computational systems and methods for reporting information regarding appurtenances to wound dressings are described. A system can include an appurtenance to a wound dressing, including a substrate, a transmission unit, a selectively activated switch, and a projection of a size and shape to extend into an interior region of a wound dressing and configured to sample a fluid associated with a wound; a local unit, including a receiver configured to receive signals from the transmission unit, a transmitter configured to send signals to the transmission unit, a processor, non-volatile memory, and a power source; and a central assembly, including a processor, a receiver configured to receive signals from the local unit, and at least one user interface.
Abstract:
Systems and methods for wearable injection guides are described, which include: acquiring one or more digital images of a body region of an individual with at least one image capture device; creating a digitally rendered model of a wearable injection guide from the one or more digital images of the body region of the individual; adding one or more digitally rendered fiducials indicative of at least one treatment parameter to the digitally rendered model of the wearable injection guide; and forming the wearable injection guide from the digitally rendered model of the wearable injection guide, the formed wearable injection guide including one or more fiducials corresponding to the one or more digitally rendered fiducials on the digitally rendered model of the wearable injection guide.
Abstract:
Systems and methods for wearable injection guides are described, which include: acquiring one or more digital images of a body region of an individual with at least one image capture device; creating a digitally rendered model of a wearable injection guide from the one or more digital images of the body region of the individual; adding one or more digitally rendered fiducials indicative of at least one treatment parameter to the digitally rendered model of the wearable injection guide; and forming the wearable injection guide from the digitally rendered model of the wearable injection guide, the formed wearable injection guide including one or more fiducials corresponding to the one or more digitally rendered fiducials on the digitally rendered model of the wearable injection guide.
Abstract:
Prosthetic artificial joints are described, including hip, knee and shoulder joints. In some embodiments, a artificial joint prosthesis includes: a bone-facing surface of a artificial joint prosthesis, the bone-facing surface configured to face a bone-prosthesis interface in vivo; a non-contact surface of the artificial joint prosthesis, the non-contact surface adjacent to the bone-facing surface of the artificial joint prosthesis; at least one fluid deflection structure positioned adjacent to the non-contact surface, the fluid deflection structure positioned to deflect synovial fluid away from the bone-prosthesis interface in vivo; and a mechanism attached to the fluid deflection structure, the mechanism operable to move the fluid deflection structure to direct synovial fluid away from the bone-prosthesis interface in vivo.
Abstract:
Artificial joint prostheses, including hip, knee and shoulder joints, are described. In some aspects, an artificial joint prosthesis includes: a bone-facing surface of an artificial joint prosthesis, the bone-facing surface configured to face a bone-prosthesis interface in vivo; a non-contact surface of the artificial joint prosthesis, the non-contact surface adjacent to the bone-facing surface of the artificial joint prosthesis; at least one fluid deflection structure attached to the non-contact surface, the fluid deflection structure positioned to direct a flow of synovial fluid away from the bone-prosthesis interface in vivo; and at least one particle retaining structure positioned to contact the directed flow of synovial fluid and configured to retain particles present within the synovial fluid.
Abstract:
Methods and systems are described for unobtrusively monitoring patient activity to determine compliance of the patient with a prescribed regimen for treating a brain-related disorder. Patient activity associated with routine activities is detected with an activity sensor at the patient location, and activity data is transmitted to a monitoring location. The activity sensor and other components at the patient location may be incorporated into, or associated with, a cell phone, computing system, game system, appliance, or vehicle system, for example. Patient activity is processed at the patient location and/or monitoring location to identify activity parameters and/or patterns that indicate whether the patient has complied with the prescribed treatment regimen. Patient identity may be determined through biometric identification or other authentication techniques. The system may provide a report to an interested party, for example a medical care provider or insurance company, regarding compliance of the patient with the prescribed treatment regimen.
Abstract:
Methods and systems are described for unobtrusively monitoring patient activity to determine compliance of the patient with a prescribed regimen for treating for a brain-related disorder. Patient activity associated with routine patient activities is detected with an activity sensor at the patient location, and activity data is transmitted to a monitoring location. Patient activity is processed at the patient location and/or monitoring location to identify activity parameters and/or patterns that indicate whether the patient has complied with the prescribed treatment regimen. Patient identity may be determined through biometric identification or other authentication techniques. The system may provide a report to an interested party, for example a medical care provider or insurance company, regarding compliance of the patient with the prescribed treatment regimen.
Abstract:
Certain embodiments described herein relate to expandable, reversible implants. In an embodiment, the implants are controllable by way of at least one biochemical, chemical, or physical means. In an embodiment, the implants are programmable and/or pre-programmed for a particular level of expansion and/or contraction. In an embodiment, the implants are controlled remotely from a control source that is external to the subject's body.
Abstract:
The present disclosure provides systems and methods associated with acoustic transmitters, receivers, and antennas. Specifically, the present disclosure provides a transducer system for transmitting and receiving acoustic energy according to a determined acoustic emission/reception pattern. In various embodiments, an acoustic transducer system may include an array of sub-wavelength transducer elements each configured with an electromagnetic resonance at one of a plurality of electromagnetic frequencies. Each sub-wavelength transducer element may generate an acoustic emission in response to the electromagnetic resonance. A beam-forming controller may cause electromagnetic energy to be transmitted at select electromagnetic frequencies to cause a select subset of the sub-wavelength transducer elements to generate acoustic emissions according to a selectable acoustic transmission pattern. A common port may facilitate electromagnetic communication with each of the sub-wavelength transducer elements.
Abstract:
In some embodiments, an appurtenance to a wound dressing includes: a substrate with at least one surface of a size and shape to mate with a surface of a wound dressing; a plurality of projections attached to the substrate and positioned to secure the substrate to the wound dressing; one or more sensor units attached to the substrate, the one or more sensor units configured to sense a condition of the wound dressing; and a transmission unit attached to the substrate and operably coupled to the one or more sensor units, the transmission unit including circuitry configured to transmit information associated with the one or more sensor units.