Abstract:
A chemical delivery system includes a bulk container, a run/refill chamber, a first conduit and a second conduit. The bulk container stores a precursor. The run/refill chamber includes a plurality of spaced tubes having a plurality of surfaces for receiving the precursor in vapor form and storing the precursor in solid form. The first conduit connects the bulk container to the run/refill chamber for transporting the precursor from the bulk container to the run/refill chamber in vapor form. The second conduit connects the run/refill chamber to a deposition chamber for transporting the precursor from the run/refill chamber to the deposition chamber in vapor form.
Abstract:
A chemical delivery system includes a bulk container, a run/refill chamber, a first conduit and a second conduit. The bulk container stores a precursor. The run/refill chamber includes a plurality of spaced tubes having a plurality of surfaces for receiving the precursor in vapor form and storing the precursor in solid form. The first conduit connects the bulk container to the run/refill chamber for transporting the precursor from the bulk container to the run/refill chamber in vapor form. The second conduit connects the run/refill chamber to a deposition chamber for transporting the precursor from the run/refill chamber to the deposition chamber in vapor form.
Abstract:
Apparatus and method for volatilizing a source reagent susceptible to particle generation or presence of particles in the corresponding source reagent vapor, in which such particle generation or presence is suppressed by structural or processing features of the vapor generation system. Such apparatus and method are applicable to liquid and solid source reagents, particularly solid source reagents such as metal halides, e.g., hafnium chloride. The source reagent in one specific implementation is constituted by a porous monolithic bulk form of the source reagent material. The apparatus and method of the invention are usefully employed to provide source reagent vapor for applications such as atomic layer deposition (ALD) and ion implantation.
Abstract:
Vaporizers are described, suited for vaporizing a vaporizable solid source materials to form vapor for subsequent use, e.g., a deposition of metal from organometallic source material vapor on a substrate for manufacture of integrated circuitry, LEDs, photovoltaic panels, and the like. Methods are described of fabricating such vaporizers, including methods of reconfiguring up-flow vaporizers for down-flow operation to accommodate higher flow rate solid delivery of source material vapor in applications requiring same.
Abstract:
Systems, reagent support trays, particle suppression devices, and methods are disclosed. In one aspect, a system includes a vaporizer vessel having one or more interior walls enclosing an interior volume and a plurality of reagent support trays configured to be vertically stackable within the interior volume. Each of the plurality of reagent support trays is configured to be vertically stackable within the interior volume to form a stack of reagent support trays. One or more of the plurality of reagent support trays is configured to redirect a flow of a gas passing between adjacent reagent support trays in the stack of reagent support trays to cause the flow of gas to interact with the source reagent material in a particular reagent support tray before passing into a next of the plurality of reagent support trays in the stack of reagent support trays.
Abstract:
A high dielectric constant (k≥40), low leakage current (≤10−6 A/cm2 at 0.6 nm or lower equivalent oxide thickness) non-crystalline metal oxide is described, including an oxide of two or more compatible metals selected from the group consisting of bismuth, tantalum, niobium, barium, strontium, calcium, magnesium, titanium, zirconium, hafnium, tin, and lanthanide series metals. Metal oxides of such type may be formed with relative proportions of constituent metals being varied along a thickness of such oxides, to enhance their stability. The metal oxide may be readily made by a disclosed atomic layer deposition process, to provide a metal oxide dielectric material that is usefully employed in DRAM and other microelectronic devices.
Abstract:
Apparatus and method for volatilizing a source reagent susceptible to particle generation or presence of particles in the corresponding source reagent vapor, in which such particle generation or presence is suppressed by structural or processing features of the vapor generation system. Such apparatus and method are applicable to liquid and solid source reagents, particularly solid source reagents such as metal halides, e.g., hafnium chloride. The source reagent in one specific implementation is constituted by a porous monolithic bulk form of the source reagent material. The apparatus and method of the invention are usefully employed to provide source reagent vapor for applications such as atomic layer deposition (ALD) and ion implantation.
Abstract:
A silicon precursor composition is described, including a silylene compound selected from among: silylene compounds of the formula: wherein each of R and R1 is independently selected from organo substituents; amidinate silylenes; and bis(amidinate) silylenes. The silylene compounds are usefully employed to form high purity, conformal silicon-containing films of SiO2, Si3N4, SiC and doped silicates in the manufacture of microelectronic device products, by vapor deposition processes such as CVD, pulsed CVD, ALD and pulsed plasma processes. In one implementation, such silicon precursors can be utilized in the presence of oxidant, to seal porosity in a substrate comprising porous silicon oxide by depositing silicon oxide in the porosity at low temperature, e.g., temperature in a range of from 50° C. to 200° C.
Abstract:
Systems, reagent support trays, particle suppression devices, and methods are disclosed. In one aspect, a system includes a vaporizer vessel having one or more interior walls enclosing an interior volume and a plurality of reagent support trays configured to be vertically stackable within the interior volume. Each of the plurality of reagent support trays is configured to be vertically stackable within the interior volume to form a stack of reagent support trays. One or more of the plurality of reagent support trays is configured to redirect a flow of a gas passing between adjacent reagent support trays in the stack of reagent support trays to cause the flow of gas to interact with the source reagent material in a particular reagent support tray before passing into a next of the plurality of reagent support trays in the stack of reagent support trays.