Abstract:
Provided herein is a non-naturally occurring microbial organism having a methanol metabolic pathway that can enhance the availability of reducing equivalents in the presence of methanol. Such reducing equivalents can be used to increase the product yield of organic compounds produced by the microbial organism, such as 1,4-butanediol (BDO). Also provided herein are methods for using such an organism to produce BDO.
Abstract:
The invention provides non-naturally occurring microbial organisms having a toluene, benzene, p-toluate, terephthalate, (2-hydroxy-3-methyl-4-oxobutoxy)phosphonate, (2-hydroxy-4-oxobutoxy)phosphonate, benzoate, styrene, 2,4-pentadienoate, 3-butene-1ol or 1,3-butadiene pathway. The invention additionally provides methods of using such organisms to produce toluene, benzene, p-toluate, terephthalate, (2-hydroxy-3-methyl-4-oxobutoxy)phosphonate, (2-hydroxy-4-oxobutoxy)phosphonate, benzoate, styrene, 2,4-pentadienoate, 3-butene-1ol or 1,3-butadiene.
Abstract:
The invention provides a non-naturally occurring microbial organism having a 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in the respective 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway. The invention additionally provides a method for producing 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid. The method can include culturing a 6-aminocaproic acid, caprolactam or hexametheylenediamine producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding a 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway enzyme in a sufficient amount to produce the respective product, under conditions and for a sufficient period of time to produce 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid.
Abstract:
The invention provides a non-naturally occurring microbial organism having an adipate, 6-aminocaproic acid or caprolactam pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in the respective adipate, 6-aminocaproic acid or caprolactam pathway. The invention additionally provides a method for producing adipate, 6-aminocaproic acid or caprolactam. The method can include culturing an adipate, 6-aminocaproic acid or caprolactam producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding an adipate, 6-aminocaproic acid or caprolactam pathway enzyme in a sufficient amount to produce the respective product, under conditions and for a sufficient period of time to produce adipate, 6-aminocaproic acid or caprolactam.
Abstract:
Provided herein is a non-naturally occurring microbial organism having a methanol metabolic pathway that can enhance the availability of reducing equivalents in the presence of methanol. Such reducing equivalents can be used to increase the product yield of organic compounds produced by the microbial organism, such as adipate, 6-aminocaproate, hexamethylenediamine or caprolactam. Also provided herein are methods for using such an organism to produce adipate, 6-aminocaproate, hexamethylenediamine or caprolactam.
Abstract:
Provided herein is a non-naturally occurring microbial organism having a methanol metabolic pathway that can enhance the availability of reducing equivalents in the presence of methanol. Such reducing equivalents can be used to increase the product yield of organic compounds produced by the microbial organism, such as 3-hydroxyisobutyrate or MAA. Also provided herein are methods for using such an organism to produce 3-hydroxyisobutyrate or MAA.
Abstract:
Provided herein is a non-naturally occurring microbial organism having a methanol metabolic pathway that can enhance the availability of reducing equivalents in the presence of methanol. Such reducing equivalents can be used to increase the product yield of organic compounds produced by the microbial organism, such as 1,4-butanediol (BDO). Also provided herein are methods for using such an organism to produce BDO.
Abstract:
The invention provides non-naturally occurring microbial organisms containing an alkene pathway having at least one exogenous nucleic acid encoding an alkene pathway enzyme expressed in a sufficient amount to convert an alcohol to an alkene. The invention additionally provides methods of using such microbial organisms to produce an alkene, by culturing a non-naturally occurring microbial organism containing an alkene pathway as described herein under conditions and for a sufficient period of time to produce an alkene.
Abstract:
The invention provides non-naturally occurring microbial organisms having a 4-hydroxybutyrate, 1,4-butanediol, or other product pathway and being capable of producing 4-hydroxybutyrate, 1,4-butanediol, or other product, wherein the microbial organism comprises one or more genetic modifications. The invention additionally provides methods of producing 4-hydroxybutyrate, 1,4-butanediol, or other product or related products using the microbial organisms.
Abstract:
Provided herein is a non-naturally occurring microbial organism having a methanol metabolic pathway that can enhance the availability of reducing equivalents in the presence of methanol. Such reducing equivalents can be used to increase the product yield of organic compounds produced by the microbial organism, such as adipate, 6-aminocaproate, hexamethylenediamine or caprolactam. Also provided herein are methods for using such an organism to produce adipate, 6-aminocaproate, hexamethylenediamine or caprolactam.