Abstract:
A method of forming a memory cell includes forming an outer electrode material elevationally over and directly against a programmable material. The programmable material and the outer electrode material contact one another along an interface. Protective material is formed elevationally over the outer electrode material. Dopant is implanted through the protective material into the outer electrode material and the programmable material and across the interface to enhance adhesion of the outer electrode material and the programmable material relative one another across the interface. Memory cells are also disclosed.
Abstract:
Some embodiments include a construction having oxygen-sensitive structures directly over spaced-apart nodes. Each oxygen-sensitive structure includes an angled plate having a horizontal portion along a top surface of a node and a non-horizontal portion extending upwardly from the horizontal portion. Each angled plate has an interior sidewall where an inside corner is formed between the non-horizontal portion and the horizontal portion, an exterior sidewall in opposing relation to the interior sidewall, and lateral edges. Bitlines are over the oxygen-sensitive structures, and have sidewalls extending upwardly from the lateral edges of the oxygen-sensitive structures. A non-oxygen-containing structure is along the interior sidewalls, along the exterior sidewalls, along the lateral edges, over the bitlines, and along the sidewalls of the bitlines. Some embodiments include memory arrays, and methods of forming memory cells.
Abstract:
Various embodiments disclosed herein comprise methods and apparatuses for placing phase-change memory (PCM) cells of a memory array into a temperature regime where nucleation probability of the PCM cells is enhanced prior to applying a subsequent SET programming signal. In one embodiment, the method includes applying a nucleation signal to the PCM cells to form nucleation sites within the memory array where the nucleation signal has a non-zero rising-edge. A programming signal is subsequently applied to achieve a desired level of crystallinity within selected ones of the plurality of PCM cells. Additional methods and apparatuses are also described.
Abstract:
A vertical MOSFET transistor is formed in a body of semiconductor material having a surface. The transistor includes a buried conductive region of a first conductivity type; a channel region of a second conductivity type, arranged on top of the buried conductive region; a surface conductive region of the first conductivity type, arranged on top of the channel region and the buried conductive region; a gate insulation region, extending at the sides of and contiguous to the channel region; and a gate region extending at the sides of and contiguous to the gate insulation region.
Abstract:
Embodiments disclosed herein may relate to forming a storage component comprising a phase change material and a shunt relative to amorphous portions of the phase change material.
Abstract:
Embodiments disclosed herein may include depositing a storage component material over and/or in a trench in a dielectric material, including depositing the storage component material on approximately vertical walls of the trench and a bottom of the trench. Embodiments may also include etching the storage component material so that at least a portion of the storage component material remains on the approximately vertical walls and the bottom of the trench, wherein the trench is contacting an electrode and a selector such that storage component material on the bottom of the trench contacts the electrode.
Abstract:
Embodiments disclosed herein may relate to forming a storage component comprising a phase change material and a shunt relative to amorphous portions of the phase change material.
Abstract:
A phase change memory may be formed of two vertically spaced layers of phase change material. An intervening dielectric may space the layers from one another along a substantial portion of their lateral extent. An opening may be provided in the intervening dielectric to allow the phase change layers to approach one another more closely. As a result, current density may be increased at this location, producing heating.
Abstract:
Embodiments disclosed herein may include depositing a storage component material over and/or in a trench in a dielectric material, including depositing the storage component material on approximately vertical walls of the trench and a bottom of the trench. Embodiments may also include etching the storage component material so that at least a portion of the storage component material remains on the approximately vertical walls and the bottom of the trench, wherein the trench is contacting an electrode and a selector such that storage component material on the bottom of the trench contacts the electrode.
Abstract:
Embodiments disclosed herein may relate to forming a contact region for an interconnect between a selector transistor and a word-line electrode in a memory device.