摘要:
A structure fabrication method. The method comprises providing a design structure that includes (i) a design substrate and (ii) M design normal regions on the design substrate, wherein M is a positive integer greater than 1. Next, N design sacrificial regions are added between two adjacent design normal regions of the M design normal regions, wherein N is a positive integer. Next, an actual structure is provided that includes (i) an actual substrate corresponding to the design substrate, (ii) a to-be-etched layer on the actual substrate, and (iii) a memory layer on the to-be-etched layer. Next, an edge printing process is performed on the memory layer so as to form (a) M normal memory portions aligned with the M design normal regions and (b) N sacrificial memory portions aligned with the N design sacrificial regions.
摘要:
A structure fabrication method. The method comprises providing a structure which comprises (a) a to-be-etched layer, (b) a memory region, (c) a positioning region, (d) and a capping region on top of one another. Then, the positioning region is indented. Then, a conformal protective layer is formed on exposed-to-ambient surfaces of the structure. Then, portions of the conformal protective layer are removed so as to expose the capping region to the surrounding ambient without exposing the memory region to the surrounding ambient. Then, the capping region is removed so as to expose the positioning region to the surrounding ambient. Then, the positioning region is removed so as to expose the memory region to the surrounding ambient. Then, the memory region is directionally etched with remaining portions of the conformal protection layer serving as a blocking mask.
摘要:
An air particle precipitator and a method of air filtration comprise a housing unit; a first conductor in the housing unit; a second conductor in the housing unit; and a carbon nanotube grown on the second conductor. Preferably, the first conductor is positioned opposite to the second conductor. The air particle precipitator further comprises an electric field source adapted to apply an electric field to the housing unit. Moreover, the carbon nanotube is adapted to ionize gas in the housing unit, wherein the ionized gas charges gas particulates located in the housing unit, and wherein the first conductor is adapted to trap the charged gas particulates. The air particle precipitator may further comprise a metal layer over the carbon nanotube.
摘要:
A conductive layer in an integrated circuit is formed as a sandwich having multiple sublayers, including at least one sublayer of oriented carbon nanotubes. The conductive layer sandwich preferably contains two sublayers of carbon nanotubes, in which the carbon nanotube orientation in one sublayer is substantially perpendicular to that of the other layer. The conductive layer sandwich preferably contains one or more additional sublayers of a conductive material, such as a metal. In one embodiment, oriented carbon nanotubes are created by forming a series of parallel surface ridges, covering the top and one side of the ridges with a catalyst inhibitor, and growing carbon nanotubes horizontally from the uncovered vertical sides of the ridges. In another embodiment, oriented carbon nanotubes are grown on the surface of a conductive material in the presence of a directional flow of reactant gases and a catalyst.
摘要:
The invention relates generally to a method for fabricating oxygen-implanted semiconductors, and more particularly to a method for fabricating oxygen-implanted silicon-on-insulation (“SOI”) type semiconductors by cutting-up regions into device-sized pieces prior to the SOI-oxidation process. The process sequence to make SOI is modified so that the implant dose may be reduced and relatively long and high temperature annealing process steps may be shortened or eliminated. This simplification may be achieved if, after oxygen implant, the wafer structure is sent to pad formation, and masking and etching. After the etching, annealing or oxidation process steps may be performed to create the SOI wafer.
摘要:
A method for implanting gate regions essentially without implanting regions of the semiconductor layer where source/drain regions will be later formed. The method includes the steps of (a) providing (i) a semiconductor layer, (ii) a gate dielectric layer on the semiconductor layer, (iii) a gate region on the gate dielectric layer, wherein the gate region is electrically insulated from the semiconductor layer by the gate dielectric layer; (b) forming a resist layer on the gate dielectric layer and the gate region; (c) removing a cap portion of the resist layer essentially directly above the gate region essentially without removing the remainder of the resist layer; and (d) implanting the gate region essentially without implanting the semiconductor layer.
摘要:
A method for forming transistors with mutually-aligned double gates. The method includes the steps of (a) providing a wrap-around-gate transistor structure, wherein the wrap-around-gate transistor structure includes (i) semiconductor region, and (ii) a gate electrode region wrapping around the semiconductor region, wherein the gate electrode region is electrically insulated from the semiconductor region by a gate dielectric film; and (b) removing first and second portions of the wrap-around-gate transistor structure so as to form top and bottom gate electrodes from the gate electrode region, wherein the top and bottom gate electrodes are electrically disconnected from each other.
摘要:
A method of forming a wiring structure for an integrated circuit includes the steps of forming a plurality of features in a layer of dielectric material, and forming spacers on sidewalls of the features. Conductors are then formed in the features, being separated from the sidewalls by the spacers. The spacers are then removed, forming air gaps at the sidewalls so that the conductors are separated from the sidewalls by the air gaps. Dielectric layers above and below the conductors may be low-k dielectrics having a dielectric constant less than that of the dielectric between the conductors. A cross-section of each of the conductors has a bottom in contact with the a low-k dielectric layer, a top in contact with another low-k dielectric, and sides in contact only with the air gaps. The air gaps serve to reduce the intralevel capacitance.
摘要:
Semiconductor fabrication methods and structures, devices and integrated circuits characterized by enhanced operating performance. The structures generally include first and second source/drain regions formed in a body of a semiconductor material and a channel region defined in the body between the first and second source/drain regions. Disposed in at least one of the first and second source/drain regions are a plurality of plugs each formed from a volume-expanded material that transfers compressive stress to the channel region. The compressively strained channel region may be useful, for example, for improving the operating performance of p-channel field effect transistors (PFET's).
摘要:
A method for forming a gate for a FinFET uses a series of selectively deposited sidewalls along with other sacrificial layers to create a cavity in which a gate can be accurately and reliably formed. This technique avoids long directional etching steps to form critical dimensions of the gate that have contributed to the difficulty of forming FinFETs using conventional techniques. In particular, a sacrificial seed layer, from which sidewalls can be accurately grown, is first deposited over a silicon fin. Once the sacrificial seed layer is etched away, the sidewalls can be surrounded by another disposable layer. Etching away the sidewalls will result in cavities being formed that straddle the fin, and gate conductor material can then be deposited within these cavities. Thus, the height and thickness of the resulting FinFET gate can be accurately controlled by avoiding a long direction etch down the entire height of the fin.