摘要:
The present invention provides a method for the production of at least one of a fermentation product and a derivate thereof comprising the steps of: a. providing a fermentable aqueous solution comprising at least one fermentable compound and at least one impurity; b. selectively extracting the at least one impurity from at least a portion of the fermentable aqueous solution by means of an extractant to form an impurity-depleted fermentable solution comprising a fermentable compound and to form an impurity-comprising extract; and c. fermenting the fermentable compound of the impurity-depleted fermentable solution to form a fermentation broth comprising a fermentation product wherein the extractant comprises at least one of the fermentation product and a derivate thereof.
摘要:
An article having reversible thermal regulation properties comprises a substrate and a functional polymeric phase change material having a heat carrying capacity. The article is further characterized by a chemical function having moisture adsorbing properties that increase the heat carrying capacity.
摘要:
A stable suspension for the production of a temperature-regulating, polymer-containing material or fabric, comprises a solvent and a plurality of microcapsules containing at least one phase-change material. The microcapsules are incorporated in the polymer-containing material, and the stable suspension is characterized in that the solvent is capable of dissolving a fabric-forming component selected from the group consisting of at least one of the polymer and precursors thereof and the suspension is stable for at least about 20 hours. A method for manufacturing a suspension comprising a solvent and a plurality of microcapsules containing at least one phase-change material comprises providing microcapsules containing a phase-change material, providing a solvent capable of dissolving a fabric-forming component selected from the group consisting of at least one of the polymer and precursors thereof, and mixing the solvent and the microcapsules to form the suspension.
摘要:
The invention provides a method for the Industrial purification of a titanium feed stream of purity P1, by the formation of a titanium-double-salt precipitate of purity P2 and a titanium solution with purity P3, wherein P2>P1>P3, the method comprising the steps of: i. forming, from the feed, a medium comprising water, titanium ion, a cation selected from the group consisting of ammonium, cations of alkali metals, protons and a combination thereof, and an anion selected from the group consisting of OH, SO4, HSO4, halides and a combination thereof, which formed medium is further characterized by the presence of (a) a double-salt precipitate comprising titanium ion, at least one of the cations and at least one of the anions; and (b) a titanium solution; and wherein the concentration of the anion in the titanium solution is higher than 15% and the ratio between the concentrations of the cation and the anion in the titanium solution is higher than 0.2 and lower than 1.6; and ii. separating at least a portion of the precipitate from the solution.
摘要:
An article comprises a substrate, a first functional polymeric phase change material, and a plurality of containment structures that contain the first functional polymeric phase change material. The article may further comprise a second phase change material chemically bound to at least one of the plurality of containment structures or the substrate. In certain embodiments, the article further comprises a second phase change material and a binder that contains at least one of the first polymeric phase change material and the second phase change material. The containment structure may b a microcapsule or a particulate confinement material.
摘要:
The invention provides a method for the formation of small-size metal oxide particles, comprising the steps of: a) preparing a starting aqueous solution comprising at least one of metallic ion and complexes thereof, at a concentration of at least 0.1% w/w of the metal component; b) preparing a modifying aqueous solution having a temperature greater than 50° C.; c) contacting the modifying aqueous solution with the starting aqueous solution in a continuous mode in a mixing chamber to form a-modified system; d) removing the modified system from the mixing chamber in a plug-flow mode; wherein the method is characterized in that: i) the residence time in the mixing chamber is less than about 5 minutes; and iii) there are formed particles or aggregates thereof, wherein the majority of the particles formed are between about 2 nm and about 500 nm in size.
摘要:
There is disclosed a method for processing cereal material that allows for a reduction of time required for steeping and a reduction in the number of unit operations in conventional corn wet milling. The method involves continuously and simultaneously having solvent absorbed by a cereal material and abrading the cereal material. There is disclosed also the use of products of the process in the production of fermentation feedstock. There is also disclosed also for the use fermentation feedstock.
摘要:
An indirect acidulation process for producing glutamic acid from an aqueous feed containing a glutamate resulting from fermentation includes: a) contacting an aqueous feed stream at an elevated temperature with a weak acid cation exchanger (WACE) which is at least partially in its acid form, whereby a part of the cations in the solution is taken up by the cation exchanger and protons are introduced into the solution; b) contacting a second aqueous feed containing glutamate and cations at an elevated temperature with a strong acid cation exchanger (SACE) that is obtained from a subsequent step and carries cationic glutamate, whereby the cationic glutamate is transferred into the solution and most of the cations in the second aqueous feed are taken up by the SACE; c) crystallizing glutamic acid from the effluent of step (b); d) contacting the mother liquor of step (c) with the SACE which is at least partially in its acid form whereby cationic glutamate is bound; e) utilizing the SACE obtained in step (d) in step (b); f) regenerating the SACE from step (b) to its at least partially acid form by a solution of a strong acid and utilizing the SACE in its at least partially acid form in step (d) while forming an effluent containing an acidic solution of salts, comprising cations bound to the cation exchanger in step (b) and the anions of the strong acid; g) regenerating the WACE from step (a) to its at least partially acid form by the effluent from step (f) and utilizing the WACE in its at least partially acid form in step (a) while forming an effluent containing a solution of salts, comprising cations bound to the cation exchangers in steps (a) and (b) and the anions of the strong acid; and h) directing the salt solution obtained as the effluent of step (g) for commercial use.