Abstract:
A stack including a dual-passivation is etched locally so as to reveal contact pads of an integrated circuit which are situated above a last metallization level of an interconnection part of the integrated circuit. This stack serves to protect the integrated circuit against a breakdown of at least one dielectric region, at least in part porous, separating two electrically conducting elements of the interconnection part of the integrated circuit. Such a breakdown may occur due to electrical conduction assisted by the presence of defects within the at least one dielectric region.
Abstract:
The thinning of a semiconductor substrate of an integrated circuit from a back face is detected using the measurement of a physical quantity representative of the resistance between the ends of two electrically-conducting contacts situated at an interface between an insulating region and an underlying substrate region. The two electrically-conducting contacts extend through the insulating region to reach the underlying substrate region.
Abstract:
In order, for example, to improve the ohmic contact between two metal pieces located at a metallization level, these two metal pieces are equipped with two offset vias located at the metallization level and at least partially at the via level immediately above. Each offset via comprises, for example, a nonoxidizable or substantially nonoxidizable compound, such as a barrier layer of Ti/TiN.
Abstract:
In order, for example, to improve the ohmic contact between two metal pieces located at a metallization level, these two metal pieces are equipped with two offset vias located at the metallization level and at least partially at the via level immediately above. Each offset via comprises, for example, a nonoxidizable or substantially nonoxidizable compound, such as a barrier layer of Ti/TiN.
Abstract:
A variable capacitor includes a fixed main capacitor electrode disposed in a first metal layer overlying a substrate, a second main capacitor electrode spaced from the fixed main capacitor electrode, and a movable capacitor electrode disposed in the first metal layer adjacent the fixed main capacitor electrode. The movable capacitor electrode can be caused to be in a first position ohmically electrically connected to the fixed main capacitor electrode such that the variable capacitor has a first capacitance value or in a second position spaced from the fixed main capacitor electrode such that the variable capacitor has a second capacitance value.
Abstract:
A non-porous dielectric barrier is provided between a porous portion of a dielectric region and an electrically conductive element of an interconnect portion of an integrated circuit. This non-porous dielectric barrier protects the integrated circuit from breakdown of the least one dielectric region caused by electrical conduction assisted by the presence of defects located in the at least one dielectric region.
Abstract:
A variable capacitor includes a fixed main capacitor electrode disposed in a first metal layer overlying a substrate, a second main capacitor electrode spaced from the fixed main capacitor electrode, and a movable capacitor electrode disposed in the first metal layer adjacent the fixed main capacitor electrode. The movable capacitor electrode can be caused to be in a first position ohmically electrically connected to the fixed main capacitor electrode such that the variable capacitor has a first capacitance value or in a second position spaced from the fixed main capacitor electrode such that the variable capacitor has a second capacitance value.
Abstract:
A method is provided for forming an integrated circuit chip with a variable capacitor disposed in a metallization. A back end of line metallization is formed over the semiconductor substrate. The variable capacitor is formed within a cavity of the back end of line metallization. The variable capacitor includes a fixed main capacitor electrode disposed in a first metal layer of the back end of line metallization, a second main capacitor electrode electrically connected to a second metal layer of the back end of line metallization and vertically spaced from the fixed main capacitor electrode, and a movable capacitor electrode disposed in the first metal layer adjacent the fixed main capacitor electrode.
Abstract:
Method of Wireless Communication using Thermoelectric Generators Method of wireless communication between a first device and a second device, in which, the first device and the second device comprising respectively a first thermoelectric generator and a second thermoelectric generator, the two thermoelectric generators being in thermal coupling, a first signal is generated within the first device, the first thermoelectric generator is electrically powered as a function of the first signal so as to create a first thermal gradient in the said first generator and a second thermal gradient in the second generator, and a second signal is generated within the second device on the basis of the electrical energy produced by the second thermoelectric generator in response to the said second thermal gradient.
Abstract:
An integrated circuit includes a substrate and at least one NMOS transistor having, in the substrate, an active region surrounded by a trench insulating region. The transistor, active region and trench insulating region are covered by an additional insulating region. A metal contact extends through the additional insulating region to make contact with the trench insulating region. The metal contact may penetrate into the trench insulating region.