摘要:
Resistive cross point memory devices are provided, along with methods of manufacture and use. The memory device comprises an active layer of perovskite material interposed between upper electrodes and lower electrodes. A bit region located within the active layer at the cross point of an upper electrode and a lower electrode has a resistivity that can change through a range of values in response to application of one, or more, voltage pulses. Voltage pulses may be used to increase the resistivity of the bit region, decrease the resistivity of the bit region, or determine the resistivity of the bit region. Memory circuits are provided to aid in the programming and read out of the bit region.
摘要:
A method of fabricating a variable resistance device, wherein the resistance is changed by passing a voltage of various pulse length through the device, includes preparing a silicon substrate; forming a silicon oxide layer on the substrate; depositing a first metal layer on the silicon oxide, wherein the metal of the first metal layer is taken from the group of metals consisting of platinum and iridium; depositing a perovskite metal oxide thin film on the first metal layer; depositing a second metal layer on the perovskite metal oxide, wherein the metal of the second metal layer is taken from the group of metals consisting of platinum and iridium; annealing the structure at a temperature of between about 400° C. to 700° C. for between about five minutes and three hours; and completing the variable resistance device. A variable resistance R-RAM device includes a silicon substrate having a silicon oxide layer thereon; a first metal layer formed on the silicon oxide layer, wherein the metal of the first metal layer is taken from the group of metals consisting of platinum and iridium; a perovskite metal oxide thin film layer formed on the first metal layer; a second metal layer formed on the perovskite metal oxide, wherein the metal of the second metal layer is taken from the group of metals consisting of platinum and iridium; and metallizing elements to provide a complete device.
摘要:
A Cu(hfac) precursor with a substituted phenylethylene ligand has been provided. The substituted phenylethylene ligand includes bonds to molecules selected from the group consisting of C1 to C6 alkyl, C1 to C6 haloalkyl, C1 to C6 phenyl, H and C1 to C6 alkoxyl. One variation, the &agr;-methylstyrene ligand precursor has proved to be stable a low temperatures, and sufficiently volatile at higher temperatures. Copper deposited with this precursor has low resistivity and high adhesive characteristics. A synthesis method has been provided which produces a high yield of the above-described precursor.
摘要:
A method of forming a multi-layered, spin-coated perovskite thin film on a wafer includes preparing a perovskite precursor solution including mixing solid precursor material into acetic acid forming a mixed solution; heating the mixed solution in air for between about one hour to six hours; and filtering the solution when cooled; placing a wafer in a spin-coating mechanism; spinning the wafer at a speed of between about 500 rpm to 3500 rpm; injecting the precursor solution onto the wafer surface; baking the coated wafer at a temperature of between about 100° C. to 300° C.; annealing the coated wafer at a temperature of between about 400° C. to 650° C. in an oxygen atmosphere for between about two minutes to ten minutes; repeating the spinning, injecting, baking and annealing steps until a perovskite thin film of desired thickness is obtained; and annealing the perovskite thin film at a temperature of between about 500° C. to 750° C. in an oxygen atmosphere for between about ten minutes to two hours.
摘要:
A method for chemical vapor deposition of copper metal thin film on a substrate includes heating a substrate onto which the copper metal thin film is to be deposited in a chemical vapor deposition chamber; vaporizing a precursor containing the copper metal, wherein the precursor is a compound of (&agr;-methylstyrene)Cu(I)(hfac), where hfac is hexafluoroacetylacetonate, and (hfac)Cu(I)L, where L is an alkene; introducing the vaporized precursor into the chemical vapor deposition chamber adjacent the heated substrate; and condensing the vaporized precursor onto the substrate thereby depositing copper metal onto the substrate. A copper metal precursor for use in the chemical vapor deposition of a copper metal thin film is a compound of (&agr;-methylstyrene)Cu(I)(hfac), where hfac is hexafluoroacetylacetonate, and (hfac)Cu(I)L, where L is an alkene taken from the group of alkenes consisting of 1-pentene, 1-hexene and trimethylvinylsilane.
摘要:
A method of forming a highly adhesive copper thin film on a metal nitride substrate includes preparing a substrate having a metal nitride barrier layer formed on a portion thereof; heating the substrate in a chemical vapor deposition chamber to a temperature of between 160° C. to 250° C. for about one minute and simultaneously introducing a copper precursor into the reaction chamber at a very slow initial flow rate of between less than 0.1 ml/min, and simultaneously providing an initial high wet helium gas flow in the reaction chamber of greater than or equal to 5 sccm; reducing the wet helium gas flow in the reaction chamber to less than 5 sccm; and increasing the flow of copper precursor to between about 0.1 ml/min and 0.6 ml/min.
摘要:
A ferroelectric and dielectric source solution for use in chemical vapor deposition processes includes a ferroelectric/dielectric chemical vapor deposition precursor; and a solvent for carrying the ferroelectric/dielectric chemical vapor deposition precursor taken from the group of solvents consisting essentially of type A solvents, including tetraglyme, triglyme, triethylenetetramine, N,N,N′,N′-tetramethylethylenediamine; N,N,N′,N′,N″,N″-pentamethyldiethylenetriamine; and 2,2′-bipyridine; type B solvents including tetrahydrofuran, butyl ethyl ether, tert-butyl ethyl ether, butyl ether, and pentyl ether; and type C solvents including iso-propanol, 2-butanol, 2-ethyl-1-hexanol, 2-pentanol, toluene, xylene and butyl acetate; and mixtures of solvent types A, B and C.
摘要:
A method of fabricating a one-transistor memory includes, on a single crystal silicon substrate, depositing a bottom electrode structure on a gate oxide layer; implanting ions to form a source region and a drain region and activating the implanted ions spin coating the structure with a first ferroelectric layer; depositing a second ferroelectric layer; and annealing the structure to provide a c-axis ferroelectric orientation.
摘要:
A Cub(hfac) precursor with a substituted phenylethylene ligand has been provided. The substituted phenylethylene ligand includes bonds to molecules selected from the group consisting of C1 to C6 alkyl, C1 to C6 haloalkyl, C1 to C6 phenyl, H and C1 to C6 alkoxyl. One variation, the &agr;-methylstyrene ligand precursor has proved to be stable a low temperatures, and sufficiently volatile at higher temperatures. Copper deposited with this precursor has low resistivity and high adhesive characteristics. A synthesis method has been provided which produces a high yield of the above-described precursor.
摘要:
A method for using a Cu(hfac) precursor with a substituted phenylethylene ligand to form an adhesive seed layer on an IC surface has been provided. The substituted phenylethylene ligand includes bonds to molecules selected from the group consisting of C1 to C6 alkyl, C1 to C6 haloalkyl, phenyl, H and C1 to C6 alkoxyl. One variation, the &agr;-methylstyrene ligand precursor has proved to be especially adhesive. Copper deposited with this precursor has low resistivity and high adhesive characteristics. The seed layer provides a foundation for subsequent Cu layers deposited through either CVD, PVD, or electroplating. The adhesive seed layer permits the subsequent Cu layer to be deposited through an economical high deposition rate process.