Abstract:
Components formed of blow molded thermoplastic compositions are described. The blow molded thermoplastic compositions exhibit high strength and flexibility. Methods for forming the thermoplastic compositions are also described. Formation methods include dynamic vulcanization of a composition that includes an impact modifier dispersed throughout a polyarylene sulfide. A crosslinking agent is combined with the other components of the composition following dispersal of the impact modifier. The crosslinking agent reacts with the impact modifier to form crosslinks within and among the polymer chains of the impact modifier. The compositions can exhibit excellent physical characteristics at extreme temperatures and can be used to form, e.g., tubular member such as pipes and hoses and fibers.
Abstract:
Pipe sections and methods for forming pipe sections are disclosed. A pipe section includes a hollow body, the hollow body having an inner surface and an outer surface, the inner surface defining an interior. The pipe section further includes a barrier layer surrounding the hollow body, the barrier layer having an inner surface and an outer surface. The barrier layer is formed from a polyarylene sulfide composition. The polyarylene sulfide composition includes a polyarylene sulfide and a crosslinked impact modifier. Such pipe sections exhibit high strength characteristics and flexibility as well as resistance to degradation, even in extreme temperature environments, while maintaining desirable processing characteristics.
Abstract:
A polymer composition that comprises a polyarylene sulfide, inorganic fibers, impact modifier, and a functionalized coupling system is provided. The functionalized coupling system includes a disulfide compound and an organosilane compound. The weight ratio of organosilane compounds to disulfide compounds is from about 0.1 to about 10.
Abstract:
A nucleating system for a thermoplastic composition that contains a polyarylene sulfide is provided. The nucleating system includes a combination of an inorganic crystalline compound and an aromatic amide oligomer. The present inventors have discovered that the combination of these different types of nucleating agents result in excellent crystallization properties (e.g., rate of crystallization). Due to the improved crystallization rate, the thermoplastic composition can be molded at lower temperatures to still achieve the same degree of crystallization. In addition to minimizing the energy requirements of the molding operating, the use of lower temperatures can also decrease the production of “flash” normally associated with high temperature molding operations. The composition may also possess good viscosity properties that allow it to be readily molded into parts of a variety of different shapes and sizes.
Abstract:
A method for injection molding a thermoplastic composition that contains a polyarylene sulfide and an aromatic amide oligomer is provided. Due to the improved crystallization properties imparted by the oligomer, the present inventors have discovered that the thermoplastic composition can be molded at lower temperatures to still achieve the same degree of crystallization. In addition to minimizing the energy requirements for the molding operation, such low mold temperatures may be accomplished using heating mediums that are less corrosive and expensive than some conventional techniques.
Abstract:
Low VOC emission polyoxymethylene and compositions and products that incorporate the polyoxymethylene are described. The polyoxymethylene is end capped with compound that can prevent degradation of the polymer and subsequent emission of VOC degradation products such as formaldehyde. The end-capped polyoxymethylene can include an inorganic linkage within the polymer backbone that is the reaction product of a terminal hydroxyl group of the polyoxymethylene and a hydrolyzable group of the compound. Also disclosed are products as may be formed from the low VOC emission polyoxymethylene.
Abstract:
A fuel line comprising a thermoplastic composition is described. The thermoplastic compositions exhibit high strength and flexibility and can be used to form one or more layers of single layer or multi-layer fuel lines. Methods for forming the thermoplastic compositions are also described. Formation methods include dynamic vulcanization of a composition that includes an impact modifier dispersed throughout a polyarylene sulfide. A crosslinking agent is combined with the other components of the composition following dispersal of the impact modifier. The crosslinking agent reacts with the impact modifier to form crosslinks within and among the polymer chains of the impact modifier. The compositions can exhibit excellent physical characteristics at extreme temperatures.
Abstract:
Components formed of blow molded thermoplastic compositions are described. The blow molded thermoplastic compositions exhibit high strength and flexibility. Methods for forming the thermoplastic compositions are also described. Formation methods include dynamic vulcanization of a composition that includes an impact modifier dispersed throughout a polyarylene sulfide. A crosslinking agent is combined with the other components of the composition following dispersal of the impact modifier. The crosslinking agent reacts with the impact modifier to form crosslinks within and among the polymer chains of the impact modifier. The compositions can exhibit excellent physical characteristics at extreme temperatures and can be used to form, e.g., tubular member such as pipes and hoses and fibers.
Abstract:
A molded part that has a relatively small thickness so that it can be readily employed in portable electronic devices is provided. The molded part is formed from a thermoplastic composition that contains a polyarylene sulfide and an aromatic amide oligomer. Due to the improved crystallization rate, the thermoplastic composition can be molded at lower temperatures to still achieve the same degree of crystallization. In addition to minimizing the energy requirements of the molding operating, the use of lower temperatures can also decrease the production of “flash” normally associated with high temperature molding operations. The composition may also possess good viscosity properties that allow it to be readily molded into parts of a variety of different shapes and sizes.
Abstract:
Melt processed polyarylene sulfide compositions are described as are methods of forming the melt processed polyarylene sulfide compositions. The melt processed polyarylene sulfide compositions are formed according to a melt processing method that includes melt processing a mixture that includes a starting polyarylene sulfide, a disulfide compound and a filler. The melt processed polyarylene sulfide compositions may provide low chlorine content products having excellent strength characteristics.